DATASHEET # QBDE084A0B Barracuda™ Series DC-DC ### **Power Modules** 40-60V_{dc} Input; 12.0V_{dc}, 84.0A, 1000W Output ### **Description** The QBDE084A0B Barracuda™ series of dc-dc converters is a new generation of fully regulated DC/DC power modules designed to support 12.0V_{dc} intermediate bus applications where multiple low voltages are subsequently generated using point of load (POL) converters, as well as other application requiring a tightly regulated output voltage. The QBDE084A0B series operate from an input voltage range of 40 to 60V_{dc} and provide up to 1000W output power with a fully regulated output voltage of 12.0V_{dc} in an industry-standard, modified DOSA digital quarter brick. The converter incorporates digital control, synchronous rectification technology, a fully regulated control topology, and innovative packaging techniques to achieve full load efficiency exceeding 96.5% at 12.0V_{dc} output. This leads to lower power dissipations such that for many applications a heat sink is not required. Standard features include a heat plate to attach external heat sinks or contact a cold wall, on/off control, output overcurrent and over voltage protection, over temperature protection, input under and over voltage lockout and PMBus interface. The output is fully isolated from the input, allowing versatile polarity configurations and grounding connections. Built-in filtering for both input and output minimizes the need for external filtering. ### **Applications** - Distributed power architectures - Intermediate bus voltage applications - Networking equipment - Servers and storage applications - Supercomputers ### **Options** - Automatic Test Equipment - Passive Droop Load Sharing (-P=option code) - Negative Remote On/Off logic (1=option code, factory preferred) - Auto-restart after fault shutdown (4=option code, factory preferred) - Shorter pin length See footnotes on page 2 #### **Features** - Compliant to RoHS Directive 2011/65/EU and amended Directive (EU) 2015/863. - Compliant to REACH Directive (EC) No 1907/2006 - High and flat efficiency with peak efficiency 96.8% - Input voltage range: 40-60V_{dc} - Delivers up to 1000W output power - Fully regulated 12V output at all V_{in} - Low output ripple and noise - Industry standard, modified-DOSA Digital Quarter Brick: 58.4mm x 36.8mm x 15.2 mm (2.30in x 1.45in x 0.60in) - Constant switching frequency - Remote On/Off control - Output over current/voltage protection - Digital interface with PMBus™ Rev.1.2 compliance^ - Firmware update possible on installed module - Over temperature protection - Wide operating temperature range: -40°C to 85°C, continuous - ANSI/UL* 62368-1 and CAN/CSA† C22.2 No. 62368-1 Recognized, DIN VDE‡ 0868-1/A11:2017 (EN62368-1:2014/A11:2017) - ISO** 9001 and ISO14001 certified manufacturing facilities 50 Vdc Functional Isolation CE mark meets 2014/35/EU directive⁵ - Base plate (-H=option code, always required) #### **FOOTENOTES** Barracuda is a trademark of OmniOn Company - ^ PMBus name and logo are registered trademarks of SMIF, Inc. # UL is a registered trademark of Underwriters Laboratories, Inc. - † CSA is a registered trademark of Canadian Standards Association. - ‡ VDE is a trademark of Verband Deutscher Elektrotechniker e.V. - ¤ IEEE and 802 are registered trademarks of the Institute of Electrical and Electronics Engineers, Incorporated. - \S This product is intended for integration into end-user equipment . All of the required procedures of end-use equipment should be followed. - ** ISO is a registered trademark of the International Organization of Standards ### **Technical Specifications** ### **Absolute Maximum Ratings** Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only; functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the Preliminary Data Sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. | Parameter | Symbol | Min | Max | Unit | |---|---------------------|-----------|------|----------| | Input Voltage ¹ | | | | | | Continuous | V_{IN} | | 60 | V_{dc} | | Operating transient up to 100 ms | V_{IN} | -0.3 | 75 | V_{dc} | | Non-operating continuous | V_{IN} | | 75 | V_{dc} | | V _{ON/OFF} to V _{IN} (-) | V _{ON/OFF} | —- | 14.5 | V_{dc} | | ADDRx (pins 14,15) to SIG_GND (pin 10) | | -0.5 | 3.8 | V | | Operating Ambient Temperature | T _A | -40 | 85 | °C | | Storage Temperature | T _{stg} | -40 | 125 | °C | | I/O Isolation Voltage ² (100% factory Hi-Pot tested) | | | 750 | V_{dc} | ¹ Input over voltage protection will shut down the output voltage when the input voltage exceeds threshold level. ### **Electrical Specifications** Unless otherwise indicated, specifications apply overall operating input voltage, resistive load, and temperature conditions. | Parameter | Device | Symbol | Min | Тур | Max | Unit | |---|---------------------|--------------------------|-----------|------------|----------------|-----------------------| | Operating Input Voltage | | V _{IN} | 40 | 50 | 60 | V_{dc} | | Maximum Input Current (V _{IN} =40V, I _O =I _{O, max}) | | I _{IN,max} | —- | | 27 | A_{dc} | | Input No Load Current | | | | | | | | $(V_{IN} = V_{IN, nom}, I_O = 0, module enabled)$ | All | I _{IN,No load} | | 195 | | mA | | Input Stand-by Current | | | | | | | | $(V_{IN} = V_{IN, nom}, module disabled)$ | All | I _{IN,stand-by} | | | 30 | mA | | External Input Capacitance | All | | 140 | | 700 | μF | | Inrush Transient (for fuse sizing*) | All | l²t | | | 1 | A^2s | | Input Terminal Ripple Current | | | | | | | | (Measured at module input pin with maximum specified input | | | | | | | | capacitance and < 500µH inductance between voltage source | All | | —- | 900 | | mA_{rms} | | and input capacitance) | | | | | | | | 5Hz to 20MHz, V _{IN} = 48V, I _O = I _{Omax} | | | | | | | | Input Ripple Rejection (120Hz) | All | | | 25 | | dB | | Output Voltage Set-point (V_{IN} =48V, I_O =42A, T_A =25°C) | Without | $V_{O, set}$ | 11.95 | 12.00 | 12.05 | V_{dc} | | (Adjustablevia PMBus) | -P option | V O, set | 11.55 | 12.00 | 12.00 | v ac | | Output Voltage Set-point (V_{IN} =48V, I_O =42A, T_A =25°C) (Not | -P Option | $V_{O, set}$ | 11.95 | 12.00 | 12.05 | V_{dc} | | Adjustable via PMBus) | 1 Option | ▼ O, set | 11.55 | 12.00 | 12.00 | V dC | | Output Voltage | Without | | | | | | | (Over all operating input voltage (40V to 60V), resistive load, | –P option | Vo | 11.76 | | 12.24 | V_{dc} | | and temperature conditions until end of life) | , option | | | | | | | Output Voltage | | | | | | | | (Over all operating input voltage (40V to 60V), resistive load, | -P Option | Vo | 11.50 | | 12.50 | V_{dc} | | and temperature conditions until end of life) | | | | | | | | Output Regulation [V _{IN,min} = 40V] | /- D | | | 0.0 | | 0/ \/ | | Line $(V_{IN} = V_{IN, min} \text{ to } V_{IN, max})$ | w/o -P
-P option | | | 0.2
0.5 | — <u>-</u> | % V _{O, set} | | Line $(V_{IN} = V_{IN, min} \text{ to } V_{IN, max})$
Load $(I_O = I_{O, min} \text{ to } I_{O, max})$ | w/o -P | | | 0.5 | | % V _{O, set} | | | - | | | | | % V _{O, set} | | Load (I _O =I _{O, min} to I _{O, max}), Intentional Droop | -P option | | | 0.4 | — - | V _{dc} | | Temperature ($T_A = -40$ °C to +85°C) | All | | | 2 | | $\%$ $V_{O, set}$ | ² Base plate is considered floating. ### **Electrical Specifications** (continued) | Parameter | Device | Symbol | Min | Тур | Max | Unit | |--|--------|---|-------------|------------|---------|------------------------| | Output Ripple and Noise, CO=660µF, ½ Ceramic, ½ PosCap | | | | | | | | $(V_{IN}=V_{IN}, nom and I_0=I_{O, min} to I_{O, max})$ | | | | | | | | RMS (5Hz to 20MHz bandwidth) | All | | —- | 50 | | mV_{rms} | | Peak-to-Peak (5Hz to 20MHz bandwidth) | | | | | 120 | mV _{pk-pk} | | External Output Capacitance (mix<20% ceramic, remainder electrolytic. For non-droop models (w/o -P), startup IO≤55A) | All | C _{O, max} | 470 | | 10,000 | μF | | Output Power | All | Po | 0 | | 1000 | W | | Output Current | All | 10 | 0 | | 84 | Α | | VOUT_OC_FAULT_LIMIT (Default) (Adjustable via PMBus) | All | I _{O,lim} | | 92 | | A _{dc} | | Efficiency (V _{IN} = 48V T _A = 25°C) | | | | | | | | I _O =100% I _{O, max} , V _O = V _{O,set} | All | η | | 96.5 | | % | | $I_0=50\% I_{O, max}$ to 90% $I_{O, max}$, $V_0=V_{O, set}$ | All | η | | 96.8 | | % | | Switching Frequency (Primary FETs) | | fsw | | 160 | | kHz | | Dynamic Load Response | | | | | | | | dI _o /dt=1A/ms; V _{in} =V _{in,nom} ; T _A =25°C; | | | | | | | | (Tested with a 1.0µF ceramic, and 470µF capacitor at the load.) | | | | | | | | Load Change from IO = 50% to 75% of I _{O,max} | | | | | | | | Peak Deviation | All | $V_{pk} \ t_s$ | —- | 500
300 | | mV_{pk} | | Settling Time (VO <10% peak deviation)
Load Change from I_0 = 75% to 50% of $I_{0,max}$: | | ιs | | 300 | | μs | | Peak Deviation Settling Time (Vo <10% peak deviation) | All | $\begin{matrix} V_{pk} \\ t_s \end{matrix}$ | <u> </u> | 500
300 | | mV _{pk}
µs | CAUTION: This power module is not internally fused. An input line fuse must always be used. *This power module can be used in a wide variety of applications, ranging from simple standalone operation to an integrated part of sophisticated power architecture. To preserve maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an
input line fuse. The safety agencies require a fast-acting fuse with a maximum rating of 30 A (see Safety Considerations section). Based on the information provided in this Data Sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse manufacturer's Data Sheet for further information. ### **Isolation Specifications** | Parameter | Symbol | Min | Тур | Max | Unit | |-----------------------|--------|-----|------------|-----|------| | Isolation Capacitance | Ciso | | 10 | | nF | | Isolation Resistance | Riso | 10 | — - | | МΩ | ### **General Specifications** | Parameter | Device | Symbol | Тур | Unit | |--|--------|--------|-----------|-----------| | Calculated Reliability Based upon Telcordia SR-332 Issue 3: | All | MTBF | 8,596,325 | Hours | | Method I, Case 3, (IO=80%IO, max, TA=40°C, Airflow = 200 LFM),90% confidence | All | FIT | 116.3 | 109/Hours | | Weight – Open Frame | | | 90(3.17) | g (oz.) | # **Feature Specifications** Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information. | Remote On/Off Signal Interface | Parameter | Device | Symbol | Min | Тур | Max | Unit | |---|--|---------|------------------------|----------|-----------|--------------------|-----------------| | (V _{INZ} =V _{IN,min} to V _{IN,max} , Signal referenced to V _{IN} * terminal) Negative Logic (10" device code suffix); Logic Logic (10" device code suffix); Logic Low emodule Off, Logic High = module Off Positive Logic (no device code suffix); Logic Low emodule Off, Logic High = module On Logic Low emodule Off, Logic High = module On Logic Low (pull down to V _{IN} (-) externally) Voltage | | | 5 | | J. | | | | Positive Logic (no device code suffix): Logic Low = module Off, Logic High = module On Logic Low (pull down to V _{IN} (-) externally) Voltage | (V_{IN} = $V_{IN,min}$ to $V_{IN,max}$, Signal referenced to V_{IN} - terminal) | | | | | | | | Logic Low (pull down to V _{in} (-) externally) | | | | | | | | | Voltage | | | | | | | | | Sink current (V _{in} =56V) Logic High (default; pulled up internally) Internal pull-up voltage Optional external applied voltage All Vonloff 2.4 5 8.2 Vdc Optional external applied voltage Leakage current of external pull-down device (Vonloff 2.4V) Turn-On Delay and Rise Times (I ₀ =1 o, max, Adjustable via PMBus) Totage—Time until V ₀ = 10% of Vocate from either application of Vin, with Remote On/Off set to On (Enable with Vin); or operation of Remote On/Off from Off to On with Vin already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied for at least 30 millisseconds (Enable with vin) already applied vin al | | ΔΙΙ | Von/off | -03 | <u>—-</u> | 0.8 | Vda | | Logic High (default; pulled up internally) Internal pull-up voltage All Vonlett 2.4 5 8.2 Volto Vol | | | | —- | 150 | | | | Internal pull-up voltage Optional external applied voltage Leakage current of external pull-down device (V _{exter} = 2.4V) Turn-On Delay and Rise Times (I ₀ =I o,max Adjustable via PMBus) Turn-On Delay and Rise Times (I ₀ =I o,max Adjustable via PMBus) Todelay=Time until Vo = 10% of Vo,eet from either application of V _{in} with Remote On/Off from
Off to On with Vin already applied for at least 30 milliseconds (Enable with vin), or operation of Remote On/Off from Off to On with Vin already applied for at least 30 milliseconds (Enable with vin) or operation of Remote On/Off from Off to On with Vin already applied for at least 30 milliseconds (Enable with vin) or oparation of Remote On/Off from Off to On with Vin already applied for at least 30 milliseconds (Enable with vin) or oparation of Remote On/Off from Option **Increased Tables for parallel modules, with loror = 50% I o,max Without Tries=Time for Vo to rise from 10% to 90% of Vo,eet Option Price **Increased Tries for parallel modules when pre-bias Voexists at startup. **Without Tries=Time for Vo to rise from 10% to 90% of Vo,eet Option Price Option Price Option Price Option **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules when pre-bias Voexists at startup. **Increased Tries for parallel modules with on/off. **Incre | | 7 (11 | TOTYOU | | 150 | 200 | μ, , | | Optional external applied voltage Leakage current of external pull-down device (\(\begin{align*}{ccc} \lambda \) All \\ \lambda \) | | ΔΙΙ | Von/off | 24 | 5 | 82 | Vala | | Leakage current of external pull-down device (Vayoter 2-2-4V) Turn-On Delay and Rise Times (Io=I o, max, Adjustable via pMBus) Total-sy-Time until Vo = 10% of Vo,set from either application of Vn, with Remote On/Off set to On (Enable with Vin); or operation of Remote On/Off from off to On with Vin already applied for at least 30 milliseconds (Enable with on/off). * Increased Taleay for parallel modules, with Io, Total-sy, Enable with vin total delay, Enable with vin total delay, Enable with vin total Ena | | | | | 3 | | | | Turn-On Delay and Rise Times (Io=I o_max, Adjustable via PMBus) Tidelay=Time until Vo = 10% of Vo_set from either application of Vin with Remote On/Off set to On (Enable with Vin); or operation of Remote On/Off from Off to On with Vin already applied for at least 30 milliseconds (Enable with on/off). *Increased T_selay for parallel modules, with Io_ToT = 50% I o_max *Increased T_selay for parallel modules, with Io_ToT = 50% I o_max *Increased T_selay for parallel modules when pre-bias Vo exists atstartup. *Increased T_selay for parallel modules when pre-bias Vo exists atstartup. *Increased T_selay for parallel modules with outputs in parallel, no load to full load) *VOUT_COMMAND (Adjustable via PMBus) *Increased T_selay finable with on/off *Increased T_selay for parallel modules with outputs in parallel, no load to full load) *VOUT_COMMAND (Adjustable via PMBus) *Increased T_selay finable with on/off *Indeasy, finable with vin *Indeasy, finable with vin *Indeasy, finable with vin *Increased T_selay finable with on/off *Indeasy, finable with vin *Indeasy, finabl | Leakage current of external pull-down device | | · | | | | | | PMBus Totaley=Time until Vo = 10% of Vo.set from either application of Vin with Remote On/Off set to On (Enable with Vin); or operation of Remote On/Off from Off to On with Vin already applied for at least 30 millisseconds (Enable with vin on/off). *Increased Teleby for parallel modules, with lotot = 250% Lo.max | | | | | | | - | | application of V _I , with Remote On/Off set to On (Enable with Vin); or operation of Remote On/Off from Off to On with Vin); or operation of Remote On/Off from Off to On with Vin already applied for at least 30 milliseconds (Enable with on/off). * Increased T _{otaley} for parallel modules, with I _{OTOT} = 50% I _{Omax} T _{rise} =Time for V _O to rise from 10% to 90% of V _{Oset} , with I _{OTOT} = 50% I _{Omax} Without T _{rise} =Time for V _O to rise from 10% to 90% of V _{Oset} , option P _O P _O T _{rise} *Increased T _{rise} for parallel modules when pre-bias Vo exists atstartup. Load Sharing Current Balance (difference in output current across all modules with outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) All V _{O,set} 9.5 12.0 V _{dc} V _{Oset} +4.0V V _{Oset} +4.0V V _{Oset} +2.5V to 15.99V Overtemperature Protection (Adjustable via PMBus) Turn-on Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] T _{delay, Enable with Vin Trelay, vin Prese Trelay, Enable with} | | | | | | | | | (Enable with Vin); or operation of Remote On/Off from Off to On with Vin); or operation of Remote On/Off from Off to On with Vin already applied for at least 30 millisseconds (Enable with on/Off). *Increased T _{delay} for parallel modules, with I _{O,TOT} = 50% I _{O,max} | | Without | Tdelay Enable with Vin | | | 85 | ms | | Option Seconds (Enable with on/off). *Increased T _{delay} for parallel modules, with lo ₁ org = 50% I o _{max} Trise=Time for Vo to rise from 10% to 90% of V _{0,set} , vincreased T _{rise} for parallel modules when pre-bias Vo exists atstartup. Load Sharing Current Balance (difference in output current across all modules with outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) Overtemperature Protection (Adjustable via PMBus) Trise Option Mithout Trise Option | (Enable with Vin); or operation of Remote On/Off from | | j. | | | 45 | ms | | * Increased T _{delay} , for parallel modules, with I _{O,TOT} = 50% I _{O,max} * Increased T _{rise} from 10% to 90% of V _{O,set} , Poption T _{rise} Trise Trise Trise Trise for Vo to rise from 10% to 90% of V _{O,set} , Poption P _O Trise Poption P _O P _O Poption | | - | | | | 85* | ms | | with I _{O,TOT} = 50% I _{O,max} Trise=Time for V _O to rise from 10% to 90% of V _{O,set} , *Increased Trise for parallel modules when pre-bias Vo exists atstartup. Load Sharing Current Balance (difference in output current across all modules with outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) All Vo,set Vo,set Vo,set +4,0V up Volution 15,99V Overtemperature Protection (Adjustable via PMBus) All Totp,set Trise 15 ms Trise 25 ms Adc Adc Vo,set Vo,set +4,0V up Volution 15,99V Overtemperature Protection (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold (Minusov) FAULT_LIMIT] Turn-off Threshold (Minusov) FAULT_LIMIT] Trise 15 16 Adc Adc Adc Adc Volutiff Vo,set +4,0V up Volution 15,99V Overtemperature Protection (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold (VIN_OV_FAULT_LIMIT) 68 Vdc | | | l <u> </u> | | | 45* | ms | | Trise=Time for Vo to rise from 10% to 90% of Vo,set, *Increased Trise for parallel modules when pre-bias Vo exists at startup. Increased Trise for parallel modules when pre-bias Vo exists at startup. Increased Trise for parallel modules when pre-bias Vo exists at startup. Increased Trise for parallel modules when pre-bias Vo exists at startup. Trise | · · | Οριίστ | | | | | | | *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules when pre-bias Vo exists at startup. *Increased Trise for parallel modules with option *India Main opti | | Without | | | | | | | exists atstartup. -P option -P option Load Sharing Current Balance (difference in output current across all modules with outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) All Vo, set +2.5V Voset +4.0V up Voset +4.0V up Voset +2.5V Covertemperature Protection (Adjustable via PMBus) All Totp,set Trise 25 ms Adc Adc Adc Adc Voset 12.0 Voset +4.0V up Voset +4.0V up Voset +4.0V up Voset +6.0V u | T_{rise} =Time for V_O to rise from 10% to 90% of $V_{O,set}$, | - | T_{rise} | | 15 | | ms | | Load Sharing Current Balance (difference in output current across all modules with outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) All Vo,set Vo,set +4.0V up Voset to 15.99V Overtemperature Protection (Adjustable via PMBus) All Totp,set Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] Totp,set Vo,set Vo,set +4.0V up Vo,set +4.0V up Vo,set +4.0V up Vo,set +4.0V up Vo,set to 15.99V Covertemperature Protection (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] | *Increased T _{rise}
for parallel modules when pre-bias Vo | • | | | | | | | Load Sharing Current Balance (difference in output current across all modules with outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) All Vo, set s | exists atstartup. | | T_{rise} | | 25 | | ms | | (difference in output current across all modules with outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) All Vo,set VO,set +4,0V up to 15,99V Overtemperature Protection (Adjustable via PMBus) All ToTP,set Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] Ldiff —— 8 Adc option Idiff —— 8 Adc Option Idiff —— 8 Adc Adc Adc Adc Adc Adc Adc | Load Charing Current Delance | Ориоп | | | | | | | outputs in parallel, no load to full load) VOUT_COMMAND (Adjustable via PMBus) All Vo,set Vo,set +4.0V up to 15.99V Overtemperature Protection (Adjustable via PMBus) All Totp,set Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold (VIN_OV_FAULT_LIMIT) Turn-off Threshold (VIN_OV_FAULT_LIMIT) Option All Vo,set +4.0V up Vo,set +4.0V up to 15.99V All Totp,set 140 39 Vdc Vdc Vdc Vdc Vo,set +4.0V up Vdc to 15.99V Overtemperature Protection (Adjustable via PMBus) Turn-off Threshold 39 Vdc Vdc Vdc Vdc Vo,set +4.0V up Vdc 15.99V Overtemperature Protection (Adjustable via PMBus) Turn-off Threshold 39 Vdc Vdc Vdc Vdc Vdc Vdc Vdc | | -P | 1 | | | 0 | Λ. | | VOUT_COMMAND (Adjustable via PMBus) All Vo,set Vo,set +4.0V up Voc to 15.99V Overtemperature Protection (Adjustable via PMBus) All Totp,set Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] All Vo,set +4.0V up Vo,set +4.0V up to 15.99V All Totp,set — 140 — 39 — Vdc Vdc Vdc Vdc Turn-off Threshold Turn-off Threshold Turn-off Threshold Turn-off Threshold [VIN_OV_FAULT_LIMIT] — 68 Vdc | | option | Idiff | | | 0 | Adc | | VOUT_OV_FAULT_LIMIT (Adjustable via PMBus) All Vo,set +2.5V Vo,set +4.0V up to 15.99V Overtemperature Protection (Adjustable via PMBus) All Totp,set —— 140 —— °C Input Undervoltage Lockout (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] —— 68 Vdc | | All | V _{O, set} | 9.5 | | 12.0 | V _{dc} | | VOUT_OV_FAULT_LIMIT (Adjustable via PMBus) All Volimit Volimit Volimit Volume +2.5V +4.0V up to 15.99V Overtemperature Protection (Adjustable via PMBus) All Totp,set —— 140 —— °C Input Undervoltage Lockout (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] —— 68 Vac | | | | | | V _{O,set} | | | VOUT_OV_FAULT_LIMIT (Adjustable via PMBus) All Volumit +2.5V to 15.99V Overtemperature Protection (Adjustable via PMBus) Input Undervoltage Lockout (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] 68 Vdc | | | | V o set | | | | | Overtemperature Protection (Adjustable via PMBus) Input Undervoltage Lockout (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] Totp,set Total Tota | VOUT OV FAULT LIMIT (Adjustable via PMBus) | All | $V_{O,limit}$ | 1 | | up | V_{dc} | | Overtemperature Protection (Adjustable via PMBus) Input Undervoltage Lockout (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] All Totp,set ——————————————————————————————————— | (1.50 1 = 1 1.50 = 1 = 1.50 + 1.50 = 1.50 + 1.50 = 1.50 + 1.50 = 1.50 + 1.50 = 1.50 + 1.50 = 1.50 + 1.50 = 1.50 + 1.50 = | | | | | | | | Input Undervoltage Lockout (Adjustable via PMBus) Turn-on Threshold Turn-off Threshold Hysteresis Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] ——————————————————————————————————— | Overtemperature Protection (Adjustable via PMRus) | ΔΙΙ | Тотр | | 140 | 15.997 | °C | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | , (11 | · OTP,Set | | | |) | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 39 | | Vds | | Hysteresis 2 V _{dc} Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] — — 68 V _{dc} | | | | | | | | | Input Overvoltage Lockout (Adjustable via PMBus) Turn-off Threshold [VIN_OV_FAULT_LIMIT] —- 68 V _{dc} | | | | 2 | _ 5.5 | | | | Turn-off Threshold [VIN_OV_FAULT_LIMIT] —- 68 V _{dc} | | | | <u> </u> | | | - 40 | | | | | | | | 68 | V_{dc} | | | Turn-on Threshold (follows VIN_OV_FAULT_LIMIT -7V) | | | 61 | | | V _{dc} | # **Digital Interface Specifications** Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information. | Parameter | Conditions | Symbol | Min | Тур | Max | Unit | |--|--------------------|-----------------------|--------|-------|---------|--------| | PMBus Signal Interface Characteristics | | | | | | | | Input High Voltage (CLK, DATA) | | V _{IH} | 2.1 | | 3.6 | V | | Input Low Voltage (CLK, DATA) | | V _{IL} | | | 0.8 | V | | Input high level current (CLK, DATA) | | I _{IH} | -10 | | 10 | μA | | Input low level current (CLK, DATA) | | I _{IL} | -10 | | 10 | μA | | Output Low Voltage (CLK, DATA, SMBALERT#) | | Vol | | | 0.4 | V | | Output Low internal sink current (CLK, DATA) | VOL=0.4V | I _{OL} | 4 | | | mA | | Output Low internal sink current (SMBALERT#) | VOL=0.4V | I _{OL} | 2 | | | mA | | Output high level internal leakage current (DATA,SMBALERT#) | VOUT=3.6V | Іон | 0 | | 10 | μA | | Pin capacitance | | Со | | 0.7 | | рF | | PMBus Operating frequency range | | | | | | -
I | | (* 5-10 kHz to accommodate hosts not supporting clockstretching) | Slave Mode | FPMB | 5* | | 400 | kHz | | Measurement System Characteristics | | | | | | | | Output current reading range | | I _{OUT(RNG)} | 1.6500 | | 97 | А | | Output current reading blanking | | I _{OUT(BNK)} | 0 | | 1.5875 | Α | | Output current reading resolution | | I _{OUT(RES)} | | 146 | | mA | | Output current reading accuracy | 16.5A< lout <97A | I _{OUT(ACC)} | -5.0 | -1.4 | 3.0 | % | | Output current reading accuracy (absolute difference between actual and reported values) | 1.65A< lout <16.5A | I _{OUT(ACC)} | -1.7 | | 2.5 | А | | V_{OUT} reading range | | $V_{\text{OUT(RNG)}}$ | 0 | | 15.9997 | V | | V _{OUT} reading resolution | | V _{OUT(RES)} | | 0.244 | | mV | | V _{OUT} reading accuracy | | V _{OUT(ACC)} | -2.0 | 0.6 | 2.0 | % | | V _{IN} reading range | | V _{IN(RNG)} | 0 | | 127.875 | V | | V _{IN} reading resolution | | V _{IN(RES)} | | 125 | | mV | | V _{IN} reading accuracy | | V _{IN(ACC)} | -4.0 | 0.8 | 4.0 | % | | Temperature reading resolution | | T _(RES) | | 0.25 | | °C | | , , | | | | | | | ### Characteristic Curves, 12.0V_{dc} Output The following figures provide typical characteristics for the QBDE084A0B (12V, 84.0A) at 25°C. The figures are identical for either positive or negative Remote On/Off logic. Figure 1. Typical Converter Efficiency vs. Output Current. Figure 3. Typical Output Ripple and Noise, Io = Io,max CO=660µF. Figure 5. Typical Start-Up Using V_{in} with Remote On/Off enabled, negative logic version, without the -P option shown, I_o = I_{o,max.} Figure 2. Typical Converter Loss vs. Output Current Figure 4. Typical Transient Response to 1.0A/µs Step Change in Load from 50% to 75% to 50% of Full Load, CO=470µF and 50 Vdc Input. Figure 6. Typical Start-Up Using Remote On/Off with Vin applied, negative logic version, without the -P option shown, I_o = I_{o,max}. ### Characteristic Curves, 12.0V_{dc} Output (continued)
The following figures provide typical characteristics for the QBDE084A0B (12V, 64A) at 25°C. The figures are identical for either positive or negative Remote On/Off logic. Figure 7. Typical Start-Up Using Vin with Remote On/Off enabled, negative logic version, with the –P option shown, I_o = 50% $I_{o,max}$. Figure 9. Typical Output Voltage Regulation vs. Input Voltage without the –P option. Figure 11. Typical Output Voltage Regulation vs. Input Voltage with the -P option. Figure 8. Typical Start-Up Using Remote On/Off with Vin applied, negative logic version, with the –P option shown, I_o = 50% I_{o,max}. Figure 10. Typical Output Voltage Regulation vs. Output Current without the -P option. Figure 12. Typical Output Voltage Regulation vs. Output Current with the -P option. # Omnica ### **Test Configurations** Figure 13. Input Reflected Ripple Current Test Setup Note: Measure input reflected-ripple current with a simulated source inductance (LTEST) of 12 μ H. Capacitor C_s offsets possible battery impedance. Measure current as shown above. Figure 14. Output Ripple and Noise Test Setup. Note: Use a 1.0 μ F ceramic capacitor and a 10 μ F aluminum or tantalum capacitor. Scope measurement should be made using a BNC socket. Position the load between 51 mm and 76 mm (2 in. and 3 in.) from the module. Figure 15. Output Voltage and Efficiency Test Setup. Note: All measurements are taken at the module terminals. When socketing, place Kelvin connections at module terminals to avoid measurement errors due to socket contact resistance. $$\eta = \left(\frac{[V_{\circ}(+) - V_{\circ}(-)]I_{\circ}}{[V_{I}(+) - V_{I}(-)]I_{I}} \right) \times 100\%$$ Page 9 #### **Design Considerations** ### Input Source Impedance The power module should be connected to a low ac-impedance source. Highly inductive source impedance can affect the stability of the power module. For the test configuration in Figure 13, a $660\mu F$ electrolytic capacitor, C_{in} , (ESR<0.7W at 100kHz), mounted close to the power module helps ensure the stability of the unit. #### Safety Considerations For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL ANSI/UL 62368-1 and CAN/CSA C22.2 No. 62368-1 Recognized, DIN VDE 0868-1/A11:2017 (EN62368- 1:2014/A11:2017) If the input source is non-SELV (ELV or a hazardous voltage greater than 60 V_{dc} and less than or equal to 75 V_{dc}), for the module's output to be considered as meeting the requirements for safety extra-low voltage (SELV) or ES1, all of the following must be true: - The input source is to be provided with reinforced insulation from any other hazardous voltages, including the ac mains. - One V_{IN} pin and one V_{OUT} pin are to be grounded, or both the input and output pins are to be kept floating. - The input pins of the module are not operator accessible. - Another SELV or ES1 reliability test is conducted on the whole system (combination of supply source and subject module), as required by the safety agencies, to verify that under a single fault, hazardous voltages do not appear at the module's output. Note: Do not ground either of the input pins of the module without grounding one of the output pins. This may allow a non-SELV/ESI voltage to appear between the output pins and ground. The power module has safety extra-low voltage (SELV) or ESI outputs when all inputs are SELV or ESI. The input to these units is to be provided with a maximum 30A fast-acting (or time-delay) fuse in the ungrounded input lead. ### **Feature Descriptions** #### **Overcurrent Protection** To provide protection in a fault output overload condition, the module is equipped with internal current-limiting circuitry and can endure current limiting continuously. If the overcurrent condition causes the output voltage to fall greater than 3.0V from $V_{o,set}$, the module will shut down and remain latched off. The overcurrent latch is reset by either cycling the input power or by toggling the on/off pin for one second. If the output overload condition still exists when the module restarts, it will shut down again. This operation will continue indefinitely until the overcurrent condition is corrected. A factory configured auto-restart option (with overcurrent and overvoltage auto-restart managed as a group) is also available. An auto-restart feature continually attempts to restore the operation until fault condition is cleared. #### Remote On/Off The module contains a standard on/off control circuit reference to the $V_{\text{IN}}(-)$ terminal. Two factory configured remote on/off logic options are available. Positive logic remote on/off turns the module on during a logic-high voltage on the ON/OFF pin, and off during a logic low. Negative logic remote on/off turns the module off during a logic high, and on during a logic low. Negative logic, device code suffix "1," is the factory-preferred configuration. The On/Off circuit is powered from an internal bias supply, derived from the input voltage terminals. To turn the power module on and off, the user must supply a switch to control the voltage between the On/Off terminal and the $V_{IN}(-)$ terminal ($V_{on/off}$). The switch can be an open collector or equivalent (see Figure 16). The switch should maintain <0.8V while sinking up to 200 μ A. During a logic high when the switch is off, the maximum allowable leakage current at $V_{on/off}$ = 2.4V is 130 μ A. If using an external voltage source, the maximum voltage Von/off on the pin is 14.5V with respect to the $V_{IN}(-)$ terminal. If not using the remote on/off feature, perform one of the following to turn the unit on: For negative logic, short ON/OFF pin to V_{IN} (-). For positive logic: leave ON/OFF pin open. Figure 16. Remote On/Off Implementation. #### **Output Overvoltage Protection** The module contains circuitry to detect and respond to output overvoltage conditions. If the overvoltage condition causes the output voltage to rise above the limit in the Specifications Table, the module will shut down and remain latched off. The overvoltage latch is reset by either cycling the input power, or by toggling the on/off pin for one second. If the output overvoltage condition still exists when the module restarts, it will shut down again. This operation will continue indefinitely until the overvoltage condition is corrected. A factory configured auto-restart option (with overcurrent and overvoltage auto-restart managed as a group) is also available. An auto-restart feature continually attempts to restore the operation until fault condition is cleared. #### **Overtemperature Protection** These modules feature an overtemperature protection circuit to safeguard against thermal damage. The circuit shuts down the module when the maximum device reference temperature is exceeded. The module will automatically restart once the reference temperature cools by ~25°C. #### **Input Under Voltage Lockout** At input voltages above or below the input under/over voltage lockout limits, module operation is disabled. The module will begin to operate when the input voltage level changes to within the under and overvoltage lockout limits. However recovery from input undervoltage may be delayed by 4 seconds, or 13 seconds if the module is hot. #### **Load Sharing** For higher power requirements, the QBDE084A0B-P module offers an optional feature for parallel operation (-P Option code). This feature provides a ### Load Sharing (continued) precise forced output voltage load regulation droop characteristic. The output set point and droop slope are factory calibrated to ensure optimum matching of multiple modules' load regulation characteristics. To implement load sharing, the following requirements should be followed: - The V_{OUT}(+) and V_{OUT}(-) pins of all parallel modules must be connected together. Balance the trace resistance for each module's path to the output power planes, to ensure best load sharing and operating temperature balance. - V_{IN} must remain between 40V_{dc} and 60V_{dc} for droop sharing to be functional. - It is permissible to use a common Remote On/Off signal to start all modules in parallel. However if spurious shutdowns occur at startup due to very low impedance between module outputs, the modules should be started sequentially instead, waiting at least the Turn-On Delay Time + Rise Time before starting the next module. - These modules contain means to block reverse current flow upon start-up, when output voltage is present from other parallel modules, thus eliminating the requirement for external output ORing devices. Modules with the –P option may automatically increase the Turn On delay, T_{delay}, as specified in the Feature Specifications Table, if output voltage is present on the output bus at startup. - When parallel modules startup into a pre-biased output, e.g. partially discharged output capacitance, the T_{rise} is automatically increased, as specified in the Feature Specifications Table, to ensure graceful startup. - Ensure that the total load is <50% I_{O,MAX} (for a single module) until all parallel modules have started. Full load may be applied after Max T_{delay} + T_{rise}. - If fault tolerance is desired in parallel applications, output ORing devices should be used to prevent a single module failure from collapsing the load bus. ### Power Good, PG The QBDE084A0B module provides a Power Good (PG) feature, which compares the module's output voltage to the module's POWER_GOOD_ON and Page 11 #### POWER_GOOD_OFF values. These values are adjustable via PMBus. PG is asserted when the module's output voltage is above the POWER_GOOD_ON value, and PG is de-asserted if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going below the POWER_GOOD_OFF value. The PG signal,
provided on pin C2, is implemented with an open-drain node, pulled up via a $10k\Omega$ resistor to 3.3V internally. For Positive Logic PG (default), the PG signal is HI, when PG is asserted, and LO, when the PG is de-asserted. For Negative Logic PG, the PG signal is LO, when PG is asserted, and HI, when the PG is de-asserted. The PMBus command MFR_PGOOD _POLARITY is used to set the logic polarity of the signal. If not using the Power Good feature, the pin may be left N/C. #### **Thermal Considerations** The power modules operate in a variety of thermal environments and sufficient cooling should be provided to help ensure reliable operation. Thermal considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. Heat-dissipating components are mounted on the top side of the module. Heat is removed by conduction, convection and radiation to the surrounding environment. Proper cooling can be verified by measuring the thermal reference temperature (TH1). Figure 17. Location of the thermal reference temperature TH1 for base plate module. Peak temperature occurs at the position indicated in Figure 17. For reliable operation, this temperature ### Thermal Considerations (continued) should not exceed TH1=105°C at any airflow condition. For extremely high reliability you can limit this temperature to a lower value. The output power of the module should not exceed the rated power for the module as listed in the Ordering Information table, or the derated power for the actual operating conditions as indicated in Figs. 19-24. #### **Heat Transfer via Convection** The thermal data presented here is based on physical measurements taken in a wind tunnel, using automated thermo-couple instrumentation to monitor key component temperatures: FETs, diodes, control ICs, magnetic cores, ceramic capacitors, optoisolators, and module PWB conductors, while controlling the ambient airflow rate and temperature. For a given airflow and ambient temperature, the module output power is increased, until one (or more) of the components reaches its maximum derated operating temperature, as defined in IPC-9592B. This procedure is then repeated for a different airflow or ambient temperature until a family of module output derating curves is obtained. Please refer to the Application Note "Thermal Characterization Process For Open-Frame Board-Mounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures. Figure 18. Thermal Test Setup. Increased airflow over the module enhances the heat transfer via convection. The thermal derating of figure 19-24 shows the maximum output current that can be delivered by each module in the indicated orientation without exceeding the maximum TH1 temperature versus local ambient temperature (TA) for several air flow conditions. ### Thermal Considerations (continued) Figure 19. Output Current Derating for the Base Plate QBDE084A0Bxx-H in the Transverse Orientation; Airflow Direction for input- to input+ orientation; $V_{\rm in}$ = 50V Figure 21. Output Current Derating for the Base plate QBDE084A0Bxx-H+0.5" Heat Sink in the Transverse Orientation; Airflow Direction for input- to input+ orientation; $V_{\rm in}$ = 50V. Current Figure 23. Output Current Derating for the Base plate QBDE084A0Bxx-H+1.0" Heat Sink in the Transverse Orientation; Airflow Direction for input- to input+; V_{in} = 50V. Figure 20. Output Current Derating for the Base plate QBDE084A0Bxx-H in the Longitudinal Airflow Direction for input to output orientation; V_{in} = 50V. Figure 22. Output Current Derating for the Base plate QBDE084A0Bxx-H+0.5" Heat Sink in the Longitudinal Airflow Direction for input to output orientation; $V_{\rm in}$ = 50V. Figure 24. Output Current Derating for the Base plate QBDE084A0Bxx-H+1.0" Heat Sink in the Longitudinal Airflow Direction for input to output orientation; $V_{\rm in}$ = 50V. ### **Layout Considerations** The QBDE084A0B power module series are low profile in order to be used in fine pitch system card architectures. As such, component clearance between the bottom of the power module and the mounting board is limited. Avoid placing copper areas on the outer layer directly underneath the power module. Also avoid placing via interconnects underneath the power module. For additional layout guide-lines, refer to FLT012A0Z Preliminary Data Sheet. #### Through-Hole Lead-Free Soldering Information The RoHS-compliant, Z version, through-hole products use the SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant components. The module is designed to be processed through single or dual wave soldering machines. The pins have a RoHS- compliant, pure tin finish that is compatible with both Pb and Pb-free wave soldering processes. A maximum preheat rate of 3°C/s is suggested. The wave preheat process should be such that the temperature of the power module board is kept below 210°C. For Pb solder, the recommended pot temperature is 260°C, while the Pb-free solder pot is 270°C max. #### MSL Rating The QBDE084A0B modules have a MSL rating as indicated in the Device Codes table, last page of this document. #### Storage and Handling The recommended storage environment and handling procedures for moisture-sensitive surface mount packages is detailed in J-STD-033 Rev. A (Handling, Packing, Shipping and Use of Moisture/ Reflow Sensitive Surface Mount Devices). Moisture barrier bags (MBB) with desiccant are required for MSL ratings of 2 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of £30°C and 60% relative humidity varies according to the MSL rating (see J-STD-060A). The shelf life for dry packed SMT packages will be a minimum of 12 months from the bag seal date, when stored at the following conditions: < 40° C, < 90% relative humidity. ### **Post Solder Cleaning and Drying Considerations** Post solder cleaning is usually the final circuit board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to GE Board Mounted Power Modules: Soldering and Cleaning Application Note (ANO4-001). If additional information is needed, please consult with your OmniOn Sales representative for more details ### **EMC Considerations** The circuit and plots in Figure 26 shows a suggested configuration to meet the conducted emission limits of EN55032 Class A, test with $54V_{in}$ condition. For further information on designing for EMC compliance, please refer to the FLTR100V20Z Preliminary Data Sheet. $C1 = 5*4.7\mu F$ High Voltage cap C2 & C3 = 2* 0.015µF High Voltage cap C4 = 100µF/100V NCC KZN series + 220µF/100V Nichicon UBT series C5 & C6 = 0.01µF High Voltage cap C7= 1uf 100V 1210 C8 = 470µF/25V NCC KZE series ### **Digital Feature Descriptions** ### **PMBus Interface Capability** The QBDE084A0B series is equipped with a digital PMBus interface to allow the module to be configured and communicate with system controllers. Detailed timing and electrical characteristics of the PMBus can be found in the PMB Power Management Protocol Specification, Part 1, revision 1.2, available at http://pmbus.org. The QBDE084A0B supports both the 100kHz and 400kHz bus timing requirements. The QBDE084A0B shall stretch the clock, as long as it does not exceed the maximum clock LO period of 35ms. The QBDE084A0B will check the Packet Error Checking scheme (PEC) byte, if provided by the PMBus master, and include a PEC byte in all responses to the master. However, the QBDE084A0B does not require a PEC byte from the PMBus master. The QBDE084A0B supports a subset of the commands in the PMBus 1.2 specification. Most all of the controller parameters can be programmed using the PMBus and stored as defaults for later use. All commands that require data input or output use the linear format. The exponent of the data words is fixed at a reasonable value for the command and altering the exponent is not supported. Direct format data input or output is not supported by the QBDE084A0B. The supported commands are described in greater detail below. The QBDE084A0B contains non-volatile memory that is used to store configuration settings and scale factors. The settings programmed into the device are not automatically saved into this non-volatile memory though. The STORE_DEFAULT_ALL command must be used to commit the current settings to non-volatile memory as device defaults. The settings that are capable of being stored in non-volatile memory are noted in their detailed descriptions. ### SMBALERT Interface Capability The QBDE084A0B also supports the SMBALERT response protocol. The SMBALERT response protocol is a mechanism through which the QBDE084A0B can alert the PMBus master that it has an active status or alarm condition via pulling the SMBALERT pin to an active low. The master processes this condition, and simultaneously addresses all slaves on the PMBus through the Alert Response Address. Only the slave(s) that caused the alert (and that support the protocol) acknowledges this request. The master performs a modified receive byte operation to get the slave's address. At this point, the master can use the PMBus status commands to query the slave that caused the alert. Note: The QBDE084A0B can only respond to a single address at any given time. Therefore, the factory default state for the QBDE084A0B module is to retain its resistor programmed address, when it is in an ALERT active condition, and not respond to the ARA. This allows master systems, which do not support ARA, to continue to communicate with the slave QBDE084A0B using the programmed address and
using the various READ_STATUS commands to determine the cause for the SMBALERT. The CLEAR_FAULTS command will retire the active SMBALERT. However, when the QBDE084A0B module is used in systems that do support ARA, Bit 4 of the MFR_CPIN_ARA_CONFIG command can be used to reconfigure the module to utilize ARA. In this case, the QBDE084A0B will no longer respond to its programmed address, when in an ALERT active state. The master is expected to perform the modified received byte operation and retire the ALERT active signal. At this time, the QBDE084A0B will return to its resistor programmed address, allowing normal master-slave communications to proceed. The QBDE084A0B does not contain capability to arbitrate data bus contention caused by multiple modules responding to the modified received byte operation. Therefore, when the ARA is used in a multiple module PMBus application, it is necessary to have the QBDE084A0B module at the lowest programmed address in order for the host to properly determine all modules' address that are associated with an active SMBAlert. Please contact your GE sales representative for further assistance, and for more information on the SMBus alert response protocol, see the System Management Bus (SMBus) specification. #### PMBus Addressing The power module can be addressed through the PMBus using a device address. The module has 64 possible addresses (0 to 63 in decimal) which can be set using resistors connected from the ADDR0 and ADDR1 pins to GND. Note that some of these addresses (0 through 12, 40, 44, 45, and 55 in decimal) are reserved according to the SMBus specifications and may not be useable. The address is set in the form of two octal (0 to 7) digits, with each pin setting one digit. The ADDR1 pin sets the high order digit and ADDR0 sets the low order digit. The resistor values suggested for each digit are shown in Table 4 (1% tolerance resistors are recommended). ### PMBus Addressing (continued) | Digit | Resistor Value ($K\Omega$) | |-------|------------------------------| | 0 | 10 | | 1 | 15.4 | | 2 | 23.7 | | 3 | 36.5 | | 4 | 54.9 | | 5 | 84.5 | | 6 | 130 | | 7 | 200 | Table 4 Figure 27. Circuit showing connection of resistors used to set the PMBus address of the module. The user must know which I²C addresses are reserved in a system for special functions and set the address of the module to avoid interfering with other system operations. Both 100kHz and 400kHz bus speeds are supported by the module. Connection for the PMBus interface should follow the High-Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 for the 400kHz bus speed or the Low Power DC specifications in section 3.1.2. The complete SMBus specification is available from the SMBus web site, smbus.org. #### **PMBus Data Formats** For commands that set or report any voltage thresholds related to output voltage (including VOUT_COMMAND, VOUT_MARGIN, POWER_GOOD and READ_VOUT), the module supports the "VOUT linear" data format consisting of a two-byte value with a 16-bit, unsigned mantissa, and a fixed exponent of -12. The format of the two data bytes is shown below: Value = Mantissa x 2⁻¹² For commands that set all other thresholds, voltages or report such quantities, the module supports the "linear" data format consisting of a two byte value with an 11-bit, two's complement mantissa and a 5-bit, two's complement exponent. The format of the two data bytes is shown below: Value = Mantissa x 2 Exponent For both formats, the "low" byte is transmitted first according to the PMBus and SMBus specifications. #### Write Protection Write protection is enabled by default, to prevent accidentally changing settings. The MFR_DEVICE_TYPE (0xD0) command is used to disable or enable write protection as described below. To keep changes beyond the next removal of input voltage, the STORE_DEFAULT_ALL (0x11) command is used to save all settings to non-volatile memory. ### PMBus Enabled On/Off The module can also be turned on and off via the PMBus interface. The OPERATION command is used to actually turn the module on and off via the PMBus, while the ON_OFF_CONFIG command configures the combination of analog ON/OFF pin input and PMBus commands needed to turn the module on and off. Bit [7] in the OPERATION command data byte enables the module, with the following functions: 0 : Output is disabled 1 : Output is enabled This module uses the lower five bits of the ON_OFF_CONFIG data byte to set various ON/OFF options as follows: | Bit Position | 4 | 3 | 2 | 1 | 0 | |---------------------|----|-----|-----|-----|-----| | Access | r | r/w | r | r | r | | Function | PU | CMD | CPR | POL | CPA | | Default Value | 1 | 1 | 1 | 1 | 1 | PU: Factory set to 1. QBDE084A0B requires On/Off(i) pin to be connected to proper input rail for module to power up. This bit is used together with the CMD, CPR and ON bits to determine startup. | Bit Value | Action | |-----------|---| | | Module does not power up until commanded by the analog ON/OFF pin | | 1 | and the OPERATION command as programmed in bits [2:0] of the | | | ON_OFF_CONFIG register. | CMD: The CMD bit controls how the device responds to the OPERATION command. | Bit Value | Action | |-----------|--| | 0 | Module ignores the ON bit in the OPRETION command | | 1 | Module responds the ON bit in the OPRETION command | CPR: Factory set to 1. QBDE084A0B requires On/Off(i) pin to be connected to proper input rail for module to power up. This bit is used together with the CMD and ON bits to determine startup. | Bit Value | Action | |-----------|---| | 1 | Module requires the analog ON\OFF pin to be asserted to start the unit. | ### PMBus Adjustable Input Undervoltage Lockout The module allows adjustment of the input under voltage lockout and hysteresis. The command VIN_ON allows setting the input voltage turn on threshold, while the VIN_OFF command sets the input voltage turn off threshold. For both the VIN_ON and VIN_OFF commands, possible values range from 32.000 to 46.000V in 0.125V steps. VIN_ON must be 2.000V greater than VIN_OFF. Both the VIN_ON and VIN_OFF commands use the "Linear" format with two data bytes. The upper five bits [7:3] of the high data byte form the two's complement representation of the exponent, which is fixed at –3 (decimal). The remaining 11 bits are used for two's complement representation of the mantissa, with the 11th bit fixed at zero since only positive numbers are valid. The data associated with VIN_ON and VIN_OFF can be stored to non-volatile memory using the STORE_DEFAULT_ALL command. ### PMBus Adjustable Soft Start Delay and Rise Time The soft start delay and rise time can be adjusted in the module via PMBus. The TON_DELAY command sets the delay time in ms, and allows choosing delay times between 10ms and 500ms, with resolution of 0.5ms. The TON_RISE command sets the rise time in ms, and allows choosing soft start times between 15ms and 500ms, with resolution of 0.5ms. When setting TON_RISE, make sure that the charging current for output capacitors can be delivered by the ### PMBus Adjustable Soft Start Delay and Rise Time (continued) module in addition to any load current to avoid nuisance tripping of the overcurrent protection circuitry during startup. Both the TON_RISE and TON_DELAY commands use the "Linear" format with two data bytes. The upper five bits [7:3] of the high data byte form the two's complement representation of the exponent, which is fixed at –1 (decimal). The remaining 11 bits are used for two's complement representation of the mantissa, with the 11th bit fixed at zero since only positive numbers are valid. The data associated with TON_RISE and TON_DELAY can be stored to non-volatile memory using the STORE_DEFAULT_ALL command. ### **Output Voltage Adjustment Using the PMBus** The QBDE084A0B module output voltage set point is adjusted using the VOUT_COMMAND. The output voltage setting uses the Linear data format, with the 16 bits of the VOUT_COMMAND formatted as an unsigned mantissa, and a fixed exponent of -12 (decimal) (read from VOUT_MODE). V_{OUT} = Mantissa x 2^{-12} The range limits for VOUT_COMMAND are 8.10V to 13.20V, and the resolution is 0.244mV. The data associated with VOUT_COMMAND can be stored to non-volatile memory using the STORE_DEFAULT_ALL command. ### **Output Voltage Margining Using the PMBus** The QBDE084A0B module can also have its output voltage margined via PMBus commands. The command VOUT_MARGIN_HIGH sets the margin high voltage, while the command VOUT_MARGIN_LOW sets the margin low voltage. Both the VOUT_MARGIN_HIGH and VOUT_MARGIN_LOW commands use the "Linear" mode with the exponent fixed at –12 (decimal). The data associated with VOUT_MARGIN_HIGH and VOUT_MARGIN_LOW can be stored to non-volatile memory using the STORE_DEFAULT_ALL command. The module is commanded to go to the margined high or low voltages using the OPERATION command. Bits [5:2] are used to enable margining as follows: 00XX : Margin Off 0110 : Margin Low (Act on Fault) 1010 : Margin High (Act on Fault) Measuring Output Voltage Using the PMBus The module can provide output voltage information using the READ_VOUT command. The command returns two bytes of data in the linear format, with the 16 bits of the READ_VOUT formatted as an unsigned mantissa, and a fixed exponent of -12 (decimal). During module manufacture, an offset correction value is written into the non-volatile memory of the module to null errors in the tolerance and A/D conversion of VOUT. The command MFR_VOUT_READ_CAL_OFFSET can be used to read the offset - two bytes consisting of a signed 16-bit mantissa in two's complement format, using a fixed exponent of -12 (decimal). The resolution is 0.244mV. The corrected Output voltage reading is then given by: V_{OUT} (Re ad) = [VOUT (
A / D) + MFR _ VOUT _ READ _ CAL _ OFFSET ### Measuring Input Voltage Using the PMBus The module can provide input voltage information using the READ_VIN command. The command returns two bytes of data in the linear format. The upper five bits [7:3] of the high data byte form the two's complement representation of the exponent, which is fixed at –3 (decimal). The remaining 11 bits are used for two's complement representation of the mantissa, with the 11th bit fixed at zero since only positive numbers are valid. During module manufacture, offset and gain correction values are written into the non-volatile memory of the module to null errors in the tolerance and A/D conversion of Vin. The command MFR_VIN_READ_CAL_OFFSET can be Page 19 ### Measuring Input Voltage Using the PMBus (continued) used to read the offset - two bytes consisting of a five-bit exponent (fixed at -3) and a 11-bit mantissa in two's complement format. The resolution is 125mV. The command MFR_VIN_READ_CAL_GAIN can be used to read the gain correction - two bytes consisting of a unsigned 16 bit number. The resolution of this correction factor 0.000122. The corrected input voltage reading is then given by: V_{IN} (Re ad) = $[V_{IN}(A/D)]$ (MFR_VIN_READ_CAL_GAIN/8192)] + MFR_VIN_READ_CAL_OFFSET ### Measuring Output Current Using the PMBus The module measures output current by using the output filter inductor winding resistance as a current sense element. The module can provide output current information using the READ_IOUT command. The command returns two bytes of data in the linear format. The upper five bits [7:3] of the high data byte form the two's complement representation of the exponent, which is fixed at -3 (decimal). The remaining 11 bits are used for two's complement representation of the mantissa, with the 11th bit fixed at zero since only positive numbers are valid. Output current readings are blanked below 1.65A. During module manufacture, offset and gain correction values are written into the non-volatile memory of the module to null errors in the tolerance and A/D conversion of IOUT. The command MFR_IOUT_CAL_OFFSET can be used to read the offset - two bytes consisting of a five-bit exponent (fixed at -3) and a 11-bit mantissa in two's complement format. The resolution is 125mA. The command MFR_IOUT_CAL_GAIN can be used to read the gain correction - two bytes consisting of a unsigned 16 bit number. The resolution of this correction factor 0.000122. The READ_IOUT command provides module average output current information. This command only supports positive current sourced from the module. If the converter is sinking current a reading of 0 is provided. l_{OUT} (Re ad) = $[l_{OUT}(A/D)]$ (MFR _ l_{OUT} _ CAL _ GAIN / 8192)] + MFR _ l_{OUT} _ CAL _ OFFSET ### Measuring the Temperature using the PMBus The module can provide temperature information using the READ_TEMPERATURE_1 command. The command returns two bytes of data in the linear format. The upper five bits [7:3] of the high data byte form the two's complement representation of the exponent, which is fixed at -2 (decimal). The remaining 11 bits are used for two's complement representation of the mantissa. Note that the module's temperature sensor is located close to the module hot spot TH1 (see Thermal Considerations). and is subjected to temperatures higher than the ambient air temperature near the module. The temperature reading will be highly influenced by module load and airflow conditions. ### Reading the Status of the Module using the PMBus The module supports a number of status information commands implemented in PMBus. However, not all features are supported in these commands. A X in the FLAG cell indicates the bit is not supported. STATUS_WORD: Returns two bytes of information with a summary of the module's fault/warning conditions. | Bit
Position | Flag | Default
Value | |-----------------|-----------------------|------------------| | 15 | VOUT fault | 0 | | 14 | IOUT fault or warning | 0 | | 13 | Input Voltage fault | 0 | | 12 | X | 0 | | 11 | POWER_GOOD# (is | 0 | | | negated) | | | 10 | X | 0 | | 9 | X | 0 | | 8 | X | 0 | | voitage radit | 0 | | |---------------|---|--| | Χ | 0 | | | ER_GOOD# (is | 0 | | | negated) | | | | Χ | 0 | | | Χ | 0 | | | Χ | 0 | | | High Byte | | | | BIT
Position | Flag | Value | |-----------------|-----------------------------|-------| | 7 | X | 0 | | 6 | OFF | 0 | | 5 | VOUT Overvoltage | 0 | | 4 | IOUT Overcurrent | 0 | | 3 | VIN Undervoltage | 0 | | 2 | Temperature | 0 | | 1 | CML (Comm. Memory
Fault) | 0 | | 0 | X | 0 | | | Low Puto | • | Low Byte ### PMBus Adjustable Soft Start Delay and Rise Time (continued) STATUS_VOUT: Returns one byte of information relating to the status of the module's output voltage related faults. | Bit Position | Flag | Default Value | |---------------------|---------------------|------------------------| | 7 | VOUT OV Fault | 0 | | 6 | X | 0 | | 5 | X | 0 | | 4 | X | 0 | | | | | | Bit Position | Flag | Default Value | | Bit Position | Flag
X | Default Value 0 | | Bit Position 3 2 | Flag
X
X | Default Value 0 0 | | Bit Position 3 2 | Flag
X
X
X | Default Value 0 0 0 | STATUS_IOUT: Returns one byte of information relating to the status of the module's output current related faults. | Bit Position | Flag | Default Value | |---------------------|-----------------|----------------------| | 7 | IOUT OC Fault | 0 | | 6 | X | 0 | | 5 | IOUT OC Warning | 0 | | 4 | X | 0 | | 3 | X | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | STATUS_INPUT: Returns one byte of information relating to the status of the module's input voltage related faults. | Bit Position | Flag | Default Value | |---------------------|----------------------|----------------------| | 7 | VIN OV Fault | 0 | | 6 | X | 0 | | 5 | X | 0 | | 4 | VIN UV Fault | 0 | | 3 | Module Off (Low VIN) | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | STATUS_TEMPERATURE: Returns one byte of information relating to the status of the module's temperature related faults. | Bit Position | Flag | Default Value | |---------------------|------------|----------------------| | 7 | OT Fault | 0 | | 6 | OT Warning | 0 | | 5 | X | 0 | | 4 | X | 0 | | 3 | X | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | STATUS_CML: Returns one byte of information relating to the status of the module's communication related faults. | Bit Position | Flag | Default Value | |---------------------|-----------------------------|----------------------| | 7 | Invalid/Unsupported Command | 0 | | 6 | Invalid/Unsupported Data | 0 | | 5 | Packet Error Check Failed | 0 | | 4 | X | 0 | | 3 | X | 0 | | 2 | X | 0 | | 1 | X | 0 | | 0 | X | 0 | ### **Summary of Supported PMBus Commands** This section outlines the PMBus command support for the QBDW033A0B bus converters. Each supported command is outlined in order of increasing command codes with a quick reference table of all supported commands included at the end of the section. Each command will have the following basic information. ### **Command Name [Code]** Command support Data format Factory default Additional information may be provided in tabular form or other format, if necessary. #### **OPERATION [0x01]** Command support: On/Off Immediate and Margins (Act on Fault). Soft off with sequencing not supported and Margins (Ignore Fault) not supported. Therefore bits 6, 3, 2, 1 and 0 set as read only at factory defaults. | Format | 8 bit unsigned (bit field) | | | | | | | | |---------------------|----------------------------|-----|------|-------|------|--------|---|-----| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Access | r/w | r | r/w | r/w | r | r | r | r | | Function | ON/ | OFF | Bits | [5:4] | Bits | s[3:2] | N | I/A | | Default Value | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | #### ON_OFF_CONFIG [0x02] Command support: Bit 1 polarity will be set based upon module code [0=Negative on/off logic, 1=positive on/off logic to allow customer system to know hardware on/off logic. | Format | 8 bit unsigned (bit field) | | | | | | | | |---------------------|----------------------------|------------|---|----------|-----------|-----------|-------------|-----------| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | A ccess | r | r | r | r | r/w | r | r | r | | Function | | (reserved) | | Bit 4 pu | Bit 3 cmd | Bit 2 cpr | Bit 1 pol | Bit 0 cpa | | Default Value | 0 | 0 | 0 | 1 | 1 | 1 | Module code | 1 | #### CLEAR_FAULTS [0x03] Command support: All functionality #### STORE_DEFAULT_ALL[0x11] Command support: All functionality - Stores operating parameters to EEprom memory. Command requires \leq 500ms to execute. Delay any additional commands to module for sufficient time to complete execution. ### RESTORE_DEFAULT_ALL[0x12] Command support: All functionality - Restores operating parameters from EEprom memory. Command requires ≤ 200ms to execute. Delay any additional commands to module for sufficient time to complete execution. #### VOUT_MODE[0x20] Command support: Supported. Factory default: 0x14 – indicates linear mode with exp = -12 | Format | | | | 8 bit unsign | ed (bit field) | | | | |---------------------|---|---------------|---|--------------|----------------|--------------|--------|---| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Access | r | r | r | r | r | r | r | r | | Function | | Mode (linear) | | | 2's cor | nplement exp | oonent | | | Default Value | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | ### Summary of Supported PMBus Commands (continued) ### VOUT_COMMAND [0x21] Data format: 16 bit unsigned mantissa (implied exponent per VOUT_MODE) Factory default: 12.000V (12.00/2-12 → 49,152 = 0xC000) [standard code] Range limits (max/min): 13.200V/8.100V Units: volt Command support: Supported #### VOUT_CAL_OFFSET [0x23] Range limits (max/min): +0.25/-0.25 Units: volt Command support: read/write support, lockout per
MFR_DEVICE_TYPE, functionality implemented. #### VOUT_MARGIN_HIGH [0x25] Range limits (max/min): 13.2/8.1 Units: volt Command support: read/write support, full functionality except "Ignore faults". Note: Range cross-check - value must be greater than VOUT_MARGIN_LOW value. ### VOUT_MARGIN_LOW [0x26] Range limits (max/min): 13.2/8.1 Units: volt Command support: read/write support, full functionality except "Ignore faults". Note: Range cross-check - value must be less than VOUT_MARGIN_HIGH value. #### VOUT_DROOP [0x28] Factory default: 0 (No droop); 15 (Parallel operation) Range limits (max/min): 50/0 Units: mv/A Command support: All functionality #### VIN_ON [0x35] Range limits (max/min): 46/32 Units: volt Command support: All functionality Note: Special interlock checks between VIN_ON and VIN_OFF maintain a hysteresis gap of 2V minimum and do not allow the OFF level to be higher than and ON level #### VIN_OFF [0x36] Range limits (max/min): 46/32 Units: volt Command support: All functionality Note: Special interlock checks between VIN_ON and VIN_OFF maintain a hysteresis gap of 2V minimum and do not allow the OFF level to be higher than and ON level #### VOUT_OV_FAULT_LIMIT [0x40] Range limits (max/min): 15.99/10.9 (See note 2) Units: volt Command support: All functionality #### Note: - 1. Range cross- check value must be greater than VOUT_COMMAND value. - 2. The maximum OV Fault Limit equals the output set point plus 3V, up to 15.99V. This is an automatic module protection feature that will override a user-set fault limit if the user limit is set too high. ### **Summary of Supported PMBus Commands** (continued) ### VOUT_OV_FAULT_RESPONSE [0x41] #### **Command support:** - Response settings (bits RSP0:1) only a setting of 10, unit shuts down and responds according to the retry settings below, is supported. - Retry settings (bits RS0:2) only settings of 000 (unit does not attempt to restart on fault) and 111 unit continuously restarts (normal startup) while fault is present until commanded off, bias power is removed or another fault condition causes the unit to shutdown. - Delay time setting (bits 0-2) only DT0:2 = 0 (no delay) supported. Default Settings: The default settings for the VOUT_OV_FAULT_RESPONSE command are; - The unit shuts down in response to a VOUT over voltage condition. - The unit will continuously restart (normal startup) while the VOUT over voltage condition is present until it is commanded off, bias power is removed or another fault condition causes the unit to shutdown. - The shutdown delay is set to 0 delay cycles. | Format | 8 bit unsigned (bit field) | | | | | | | | |---------------------|----------------------------|--------|-------|-------|-------|-------|-------|-------| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Access | r | r | r/w | r/w | r/w | r | r | r | | Function | RSP[1] | RSP[0] | RS[2] | RS[1] | RS[0] | DT[2] | DT[1] | DT[0] | | Default Value | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | #### IOUT_OC_FAULT_LIMIT [0x46] Range limits (max/min): 60/20 Units: amp Command support: All functionality Note: Range cross-check - value must be greater than IOUT_OC_WARN_LIMIT value. #### **IOUT_OC_FAULT_RESPONSE** [0x47] #### Command support: - Response settings (bits RSP0:1) only settings of 11, unit shuts down and responds according to the retry settings below, is supported. - Retry settings (bits RSO:2) only settings of 000 (unit does not attempt to restart on fault) and 111 unit continuously restarts (normal startup) while fault is present until commanded off, bias power is removed or another fault condition causes the unit to shutdown. - Delay time setting (bits 0-2) only DT0:2 = 0 (no delay) supported. Default Settings: The default settings for the IOUT_OC_FAULT_RESPONSE command are; - The unit shuts down in response to an IOUT over current condition. - The unit will continuously restart (normal startup) while the IOUT over current condition is present until it is commanded off, bias power is removed or another fault condition causes the unit to shutdown. - The shutdown delay is set to 0 delay cycles. | Format | 8 bit unsigned (bit field) | | | | | | | | | |---------------------|----------------------------|--------|-------|-------|-------|-------|-------|-------|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Access | r | r | r/w | r/w | r/w | r | r | r | | | Function | RSP[1] | RSP[0] | RS[2] | RS[1] | RS[0] | DT[2] | DT[1] | DT[0] | | | Default Value | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | #### IOUT_OC_WARN_LIMIT [0x4A] Range limits (max/min): 40/10 Units: amp ### **Summary of Supported PMBus Commands** (continued) Command support: read/write support, functionality complete Note: Range cross-check - value must be less than IOUT_OC_FAULT_LIMIT value. #### OT_FAULT_LIMIT [0x4F] Range limits (max/min): 140/25 Units: degrees C. Command support: All functionality Note: Range cross-check - value must be greater than OT_WARN_LIMIT value. #### OT_FAULT_RESPONSE [0x50] #### Command support: - Response settings (bits RSP0:1) only setting of 10, unit shuts down and responds according to the retry settings below. - Retry settings (bits RS0:2) only settings of 000 (unit does not attempt to restart on fault) and 111 unit continuously restarts (normal startup) while fault is present until commanded off, bias power is removed or another fault condition causes the unit to shutdown. - Delay time setting (bits 0-2) only DT0:2 = 0 (no delay) supported. Default Settings: The default settings for the OT_FAULT_RESPONSE command are; - The unit shuts down in response to an over-temperature condition. - The unit will continuously restart (normal startup) while the over-temperature condition is present until it is commanded off, bias power is removed or another fault condition causes the unit to shutdown. - The shutdown delay is set to 0 delay cycles. | Format | | 8 bit unsigned (bit field) | | | | | | | | | |---------------------|--------|----------------------------|-------|-------|-------|-------|-------|-------|--|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | Access | r | r | r/w | r/w | r/w | r | r | r | | | | Function | RSP[1] | RSP[0] | RS[2] | RS[1] | RS[0] | DT[2] | DT[1] | DT[0] | | | | Default Value | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | | | #### OT_WARN_LIMIT [0x51] Range limits (max/min): 125/25 Units: degrees C. Command support: All functionality Note: Range cross-check - value must be less than OT_FAULT_LIMIT value. #### VIN_OV_FAULT_LIMIT [0x55] Range limits (max/min): 90/48 Units: volt Command support: All functionality ### VIN_OV_FAULT_RESPONSE [0x56] #### **Command support:** - Response settings (bits RSP0:1) only settings of 11 (The device's output is disabled while the fault is present.) is supported.. - Retry settings (bits RS0:2) only settings of 000 (unit does not attempt to restart on fault. - Delay time setting (bits 0-2) only DT0:2 = 0 (no delay) supported. Default Settings: The default settings for the VIN_OV_FAULT_RESPONSE command are; - The unit shuts down in response to a VIN over voltage condition. - The unit will continuously prepares to restart (normal startup) while the VIN over voltage condition is present until it is commanded off, bias power is removed, the VIN over voltage condition is removed, or another fault condition causes the unit to shutdown. ### **Summary of Supported PMBus Commands** (continued) • The shutdown delay is set to 0 delay cycles. | Format | | 8 bit unsigned (bit field) | | | | | | | | | |---------------------|--------|----------------------------|-------|-------|-------|-------|-------|-------|--|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | Access | r | r | r | r | r | r | r | r | | | | Function | RSP[1] | RSP[0] | RS[2] | RS[1] | RS[0] | DT[2] | DT[1] | DT[0] | | | | Default Value | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | ### POWER_GOOD_ON [0x5E] Range limits (max/min): 13.2/8.1 Units: volt Command support: full support Note: Range cross-check - value must be greater than POWER_GOOD_OFF value by 1.6V. ### POWER_GOOD_OFF [0x5F] Range limits (max/min): 13.2/8.1 Units: volt Command support: full support Note: Range cross-check – value must be less than POWER_GOOD_ON value by 1.6V. ### TON_DELAY [0x60] Range limits (max/min): 500/10 Units: milliseconds Command support: full support #### TON_RISE [0x61] Range limits (max/min): 500/15 Units: milliseconds Command support: full support #### STATUS_WORD [0x79] Command support: full implementation for supported functions (note: Fans, MFR_SPECIFIC, Unknown not supported) | Format | Format 8 bit unsigned (bit field) | | | | | | | | |---------------------|-----------------------------------|--------|-------|-----------|-----------|-------------------|--------|-----------------------| | Bit Position | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | Access | r | r | r | r | r | r | r | r | | Function | VOUT | I/POUT | INPUT | MFR_SPEC1 | #PWR_GOOD | FANS ¹ | OTHER1 | UN KNOWN ¹ | | Format | mat 8 bit unsigned (bit field) | | | | | | | | | |---------------------|--------------------------------|---------------|-------------------|-------------------|------------------|------|-----|---------|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Access | r | r | r | r | r | r | r | r | | | Function | BUSY1 | OUTPUT
OFF | VOUT_O
V_FAULT | IOUT_OC
_FAULT | VIN_UV
_FAULT | TEMP | CML | NONE OF | | ⁽¹⁾ Not supported ### STATUS_VOUT [0x7A] Command support: VOUT_OV_FAULT support, all bit reset supported | Format | | 8 bit unsigned (bit field) | | | | | | | | | |--------------|------------|----------------------------|----------|---------------------|----------|--------------------|-------------------|------------------------|--|--| | Bit Position | 7 | 7 6 5 4 3 2 1 0 | | | | | | | | | | Access | r/reset(1) | r/ reset | | | Function | VOUT_OV | VOUT_OV | VOUT_UV | VOUT_UV | VOUT_MAX | TON_MAX_ | TOFF_MAX_ | VOUT TRAC | | | | Function | _FAULT |
_WARN¹ | _WARN¹ | _FAULT ¹ | _WARN¹ | FAULT ¹ | WARN ¹ | ING ERROR ¹ | | | ⁽¹⁾ Not supported ### **Summary of Supported PMBus Commands** (continued) ### STATUS_IOUT [0x7B] Command support: IOUT_OC_FAULT support, all bit reset supported | Format | | 8 bit unsigned (bit field) | | | | | | | | | |---------------------|-------------------|-----------------------------------|------------------|--------------------------------|--|---|--------------------------------|-------------------|--|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | Access | r/ reset(1) | r/ reset | | | Function | IOUT_OC
_FAULT | IOUT_OC_LV
_FAULT ¹ | IOUT_OC
_WARN | IOUT_UC
_FAULT ¹ | Current
Share
Fault ¹ | In Power
Limiting
Mode ¹ | POUT_OP
_FAULT ¹ | POUT_OP
_WARN¹ | | | ⁽¹⁾ Not supported ### STATUS_INPUT [0x7C] Command support: VIN_OV_FAULT support, all bit reset supported | Format | 8 bit unsigned (bit field) | | | | | | | | |---------------------|----------------------------|-----------------|-----------------|-----------------|------------------------------|------------------------------|------------------------------|------------------| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Access | r/ reset(1) | r/ reset | Function | VIN_OV
FAULT | VIN_OV
WARN¹ | VIN_UV
WARN¹ | VIN_UV
FAULT | Unit Off (low input voltage) | IIN_OC
FAULT ¹ | IIN_OC
_WARN ¹ | PIN_OP
_WARN¹ | ⁽¹⁾ Not supported ### STATUS_TEMPERATURE [0x7D] Command support: OT_WARN, OT_FAULT supported, all bit reset supported | Format | 8 bit unsigned (bit field) | | | | | | | | | |---------------------|----------------------------|----------|--------------|---------------------------|----------|----------|----------|----------|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Access | r/ reset(1) | r/ reset | | Function | OT_ FAULT | OT_ WARN | UT_
WARN¹ | UT_
FAULT ¹ | reserved | reserved | reserved | reserved | | ⁽¹⁾ Not supported ### STATUS_CML [0x7E] Command support: PEC_FAULT, INVALID_DATA, INVALID_CMD supported, all bit reset supported | Format | 5 and annual 9 and (annual annual 9 | | | | | | | | | | |---------------------|---|-----------------|---------------|------------------------------|----------------------------|----------|--------------------------------|--|--|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | Access | r/ reset(1) | r/ reset | | | Function | INVALID
CMD | INVALID
DATA | PEC
FAILED | MEMORY
FAULT ¹ | PROC
FAULT ¹ | reserved | COM FAULT (other) ¹ | Memory/Logic
fault (other) ¹ | | | ⁽¹⁾ Not supported #### READ_VIN [0x88] Command support: full support #### READ_VOUT [0x8B] Command support: full support ### READ_IOUT [0x8C] Command support: full support **READ_TEMPERATURE_1** [0x8D] Command support: full support ### PMBUS_REVISION [0x98] Command support: full support | Format | | 8 bit unsigned (bit field) | | | | | | | | | |--------------|---|----------------------------|---|------------------|---|---|---|---|--|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | Access | r | r | r | r | r | r | r | r | | | | Function | I | Part I Revisior | 1 | Part II Revision | | | | | | | | DefaultValue | 0 | 1 | 0 | reserved | 0 | 0 | 1 | 0 | | | ### **Summary of Supported PMBus Commands** (continued) | | | PMBus Revision Data Byte Contents | | | | | | | | | |------------|------------------------|-----------------------------------|------------|-------------------------|--|--|--|--|--|--| | Bits [7:5] | Part I Revision | Bit [4] | Bits [3:0] | Part II Revision | | | | | | | | 000 | 1.0 | Not used | 0000 | 1.0 | | | | | | | | 001 | 1.1 | Not used | 0001 | 1.1 | | | | | | | | 010 | 1.2 | Not used | 0010 | 1.2 | | | | | | | #### MFR_DEVICE_TYPE [0xD0] Command support: partial support in place (Mod Name) | Format | Unsigned Binary | | | | | | | | | | | | | | | | |----------|-----------------|-----|-----|-----|-----|---|---|---|-------------|-----|-----|-----|-----|-----|-----|-----| | Bit Pos. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Access | r/w | r/w | r/w | r/w | r/w | r | r | r | r/w | Function | Reserved | | | | | | | | Module Name | | | | | | WPE | Res | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | | Byte | Bit | Description | Value | Meaning | | | |-----------|-----|--------------|--------|----------------------------------|--|--| | High Byte | 7:0 | Reserved | | | | | | | 7:2 | Module Namel | lxxxxx | Module Name | | | | Low Byte | 1 | WDE | 0 | Write Protect Enable not active. | | | | LOW Byte | ı | WPE | 1 | Write Protect Enable active. | | | | | 0 | Reserved | 0 | Reserved | | | 1. Present module designations (Non-isolated units will have a 0XXXXX format) a. QBDE084A0B4xxx: [101110] ### MFR_VOUT_READ_CAL_GAIN [0xD1] Factory default: 0x2000 Range limits (max/min): 0x2666/0x1999 Units: N/A Command support: support for VOUT gain calibration (factor in flash), lockout per MFR_DEVICE_TYPE ### MFR_VOUT_READ_CAL_OFFSET [0xD2] Range limits (max/min): exp must = -12 Units: N/A Command support: support for VOUT offset calibration (factor in flash), lockout per MFR_DEVICE_TYPE #### MFR_VIN_READ_CAL_GAIN [0xD3] Factory default: 0X2000 Range limits (max/min): 0x2666/0x1999 Command support: support for VIN gain calibration (factor in flash), lockout per MFR_DEVICE_TYPE #### MFR_VIN_READ_CAL_OFFSET [0xD4] Data format: VIN linear format Range limits (max/min): exp must = -3 Units: N/A Command support: support for VIN offset calibration (factor in flash), lockout per MFR_DEVICE_TYPE #### MFR_IOUT_CAL_GAIN [0xD6] Range limits (max/min): 0x2666/0x1999 Units: N/A Command support: support for IOUT gain calibration, lockout per MFR_DEVICE_TYPE ### **Summary of Supported PMBus Commands** (continued) ### MFR_IOUT_CAL_OFFSET [0xD7] Range limits (max/min): exp must = -4 Units: N/A Command support: support for IOUT offset calibration, lockout per MFR_DEVICE_TYPE #### MFR_FW_REV [0xDB] Range limits (max/min): 9.9.99 / 0.0.00 Units: N/A Command support: full read support Format: 4 binary coded decimal digits: Major revision, Minor revision, Build high, Build low (0xMj.Mn.Bh Bl) Example: 0x1219 indicates firmware revision 1.2.19. #### MFR_ ARA_CONFIG [0xE0] Command support: Full support. | Command
Format | | MFR_ ARA_CONFIG
8 bit unsigned (bit field) | | | | | | | | | | | | | |-------------------|---|---|---|-----|----------|-----|-----|-----|--|--|--|--|--|--| | Bit Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | Access | r | r | r | r/w | r/w | r/w | r/w | r/w | | | | | | | | Function | | Reserved | | ARA | Reserved | | | | | | | | | | | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | Bit | Description | Value | Meaning | | | | | | | |-----|-------------|-------|--|--|--|--|--|--|--| | 7:5 | Reserved | 000 | Reserved | | | | | | | | 4 | ARA | 0 | ARA not functional, module remains at resistor programmed address when SMBLAERTis asserted | | | | | | | | | | 1 | ARA functional, module responds to ARA only, when SMBLAERT is asserted | | | | | | | | 3:0 | Reserved | | Reserved | | | | | | | #### MFR_PGOOD_POLARITY [0xE2] Command support: full support (bit 0) as follows: Bit 0: 0 = Negative PGOOD logic (module PGOOD asserted when pin is LO, PGOOD de-asserted when pin is HI) 1 = Positive PGOOD logic (module PGOOD de-asserted when pin is LO, PGOOD asserted when pin is HI) | Command
Format | | | | | | | | | | | |---------------------|----------------|---|---|---|---|---|---|-----|--|--| | Bit Position | 7 | 3 | 2 | 1 | 0 | | | | | | | Access | r | r | r | r | r | r | r | r/w | | | | Function | Reserved logic | | | | | | | | | | | Default Value | 0 | 0 | 0 | 0 | 0 | 1 | | | | | #### MFR_MODULE_DATE_LOC_SN [0xF0] Command support: read/write support for 12 byte block, lockout per MFR_DEVICE_TYPE ### **PMBus Command Quick Reference Table** | OPERATION | PMBUS CMD | CMD
CODE | DATA
BYTES | DATA
FORMAT | DATAUNITS | TRANSFER
TYPE | DEFAULT VALUE | |
--|------------------------|-------------|---------------|----------------|-----------|------------------|--------------------|--| | ON_OFF_CONFIG | OPERATION | | | | N/A | | 0x80 | | | STORE_DEFAULT_ALL | ON_OFF_CONFIG | 0x02 | 1 | Bit field | N/A | | | | | RESTORE_DEFAULT_ALL 0x12 | CLEAR_FAULTS | 0x03 | 0 | N/A | N/A | Send byte | none | | | VOUT_COMMAND_D 022 2 | STORE_DEFAULT_ALL | 0x11 | 0 | N/A | | Send byte | none | | | VOUT_CAL_OFFSET | RESTORE_DEFAULT_ALL | 0x12 | 0 | N/A | N/A | Send byte | none | | | VOUT_CAL_OFFSET 0x23 2 | VOUT_MODE | 0x20 | 1 | mode + exp | N/A | Read byte | 0x14 | | | VOUT_CAL_OFFSET 0x23 2 | VOUT_COMMAND | 0x21 | 2 | VOUT linear | Volts | R/W word | 12.000V (Std code) | | | VOUT_MARGIN_LOW Ox26 2 | VOUT_CAL_OFFSET | 0x23 | | VOUT linear | Volts | | MS | | | VOUT_DROOP | VOUT_MARGIN_HIGH | 0x25 | 2 | VOUT linear | Volts | R/W word | 12.000V | | | VOUT_DROOP | VOUT_MARGIN_LOW | 0x26 | 2 | VOUT linear | Volts | R/W word | 11.400V | | | VIN_OFF | VOUT_DROOP | 0x28 | 2 | VOUT linear | mV/A | R/W word | | | | VOUT_OV_FAULT_LIMIT 0x40 2 VOUT linear v R/W word 15.000V VOUT_OV_FAULT_RESPONSE 0x41 1 Bit field N/A R/W byte 0xB8 IOUT_OC_FAULT_RESPONSE 0x47 1 Bit field N/A R/W word 100A IOUT_OC_FAULT_RESPONSE 0x47 1 Bit field N/A R/W word 90A OT_FAULT_LIMIT 0x44 2 IOUT linear Amps R/W word 90A OT_FAULT_RESPONSE 0x50 1 Bit field N/A R/W word 90A OT_WARN_LIMIT 0x51 2 TEMP linear Deg. C R/W word 125C VIN_OV_FAULT_RESPONSE 0x50 1 Bit field N/A R/W word 65V VIN_OV_FAULT_LIMIT 0x55 2 VIN linear V R/W word 65V VIN_OV_FAULT_LIMIT 0x55 2 VOUT linear V R/W word 1100V VIN_OV_FAULT_LIMIT 0x55 2 VOUT linear <td>VIN_ON</td> <td>0x35</td> <td></td> <td>VIN linear</td> <td>V</td> <td></td> <td>39.000V</td> | VIN_ON | 0x35 | | VIN linear | V | | 39.000V | | | VOUT_OV_FAULT_RESPONSE | VIN_OFF | 0x36 | | | V | R/W word | 36.500V | | | IOUT_OC_FAULT_LIMIT | VOUT_OV_FAULT_LIMIT | 0x40 | 2 | VOUT linear | | R/W word | 15.000V | | | OUT_OC_FAULT_RESPONSE | VOUT_OV_FAULT_RESPONSE | 0x41 | 1 | Bit field | N/A | R/W byte | 0xB8 | | | IOUT_OC_WARN_LIMIT | IOUT_OC_FAULT_LIMIT | 0x46 | 2 | IOUT linear | Amps | | 100A | | | OT_FAULT_LIMIT 0x4F 2 TEMP linear Deg. C R/W word 125C OT_FAULT_RESPONSE 0x50 1 Bit field N/A R/W byte 0x88 OT_WARN_LIMIT 0x51 2 TEMP linear Deg. C R/W word 125C VIN_OV_FAULT_RESPONSE 0x56 2 VIN linear V R/W word 65V VIN_OV_FAULT_RESPONSE 0x56 1 Bit field N/A R/W word 0xCO POWER_GOOD_ON 0x5E 2 VOUT linear V R/W word 11,00V POWER_GOOD_OFF 0x5F 2 VOUT linear V R/W word 9,800V TON_RISE 0x61 2 Time linear msec R/W word 15ms(without - P) STATUS_WORD 0x79 2 Bit field N/A Read word N/A STATUS_WORD 0x79 2 Bit field N/A Read byte N/A STATUS_INDUT 0x7A 1 Bit field N/A | IOUT_OC_FAULT_RESPONSE | 0x47 | 1 | Bit field | N/A | R/W byte | 0xF8 | | | OT_FAULT_RESPONSE 0x50 1 Bit field N/A R/W byte 0x8B OT_WARN_LIMIT 0x51 2 TEMP linear Deg. C R/W word 125C VIN_OV_FAULT_LIMIT 0x55 2 VIN linear v R/W word 65V VIN_OV_FAULT_RESPONSE 0x56 1 Bit field N/A R/W word 65V VIN_OV_FAULT_RESPONSE 0x56 1 Bit field N/A R/W byte 0xC0 POWER_GOOD_OFF 0x56 2 VOUT linear v R/W word 9,800V TON_DELAY 0x60 2 Time linear msec R/W word 0ms TON_RISE 0x61 2 Time linear msec R/W word 0ms STATUS_WORD 0x79 2 Bit field N/A Read word N/A STATUS_INPUT 0x76 1 Bit field N/A Read byte N/A STATUS_INPUT 0x70 1 Bit field N/A Read byte <td>IOUT_OC_WARN_LIMIT</td> <td>0x4A</td> <td>2</td> <td>IOUT linear</td> <td>Amps</td> <td>R/W word</td> <td>90A</td> | IOUT_OC_WARN_LIMIT | 0x4A | 2 | IOUT linear | Amps | R/W word | 90A | | | OT_WARN_LIMIT 0x51 2 TEMP linear Deg. C R/W word 125C VIN_OV_FAULT_LIMIT 0x55 2 VIN linear V R/W word 65V VIN_OV_FAULT_RESPONSE 0x56 1 Bit field N/A R/W word 65V POWER_GOOD_ON 0x5E 2 VOUT linear V R/W word 11,100V POWER_GOOD_OFF 0x5F 2 VOUT linear V R/W word 9,800V TON_DELAY 0x60 2 Time linear msec R/W word 9,800V TON_EISE 0x61 2 Time linear msec R/W word 9,800V TON_RISE 0x61 2 Time linear msec R/W word 0ms TON_RISE 0x61 2 Time linear msec R/W word 0ms TON_LISE 0x61 2 Time linear msec R/W word 0ms TON_LISE 0x61 2 Bit field N/A Read word <t< td=""><td>OT_FAULT_LIMIT</td><td>0x4F</td><td>2</td><td>TEMP linear</td><td>Deg. C</td><td>R/W word</td><td>125C</td></t<> | OT_FAULT_LIMIT | 0x4F | 2 | TEMP linear | Deg. C | R/W word | 125C | | | VIN_OV_FAULT_LIMIT 0x55 2 VIN linear v R/W word 65V VIN_OV_FAULT_RESPONSE 0x56 1 Bit field N/A R/W byte 0xC0 POWER_GOOD_ON 0x5E 2 VOUT linear v R/W word 11,00V POWER_GOOD_OFF 0x5F 2 VOUT linear v R/W word 9,800V TON_DELAY 0x60 2 Time linear msec R/W word 0ms TON_RISE 0x61 2 Time linear msec R/W word 0ms STATUS_WORD 0x79 2 Bit field N/A Read word N/A STATUS_JOUT 0x7A 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/ | OT_FAULT_RESPONSE | 0x50 | 1 | Bit field | N/A | R/W byte | 0xB8 | | | VIN_OV_FAULT_LIMIT 0x55 2 VIN linear v R/W word 65V VIN_OV_FAULT_RESPONSE 0x56 1 Bit field N/A R/W byte 0xC0 POWER_GOOD_ON 0x5E 2 VOUT linear v R/W word 11,00V POWER_GOOD_OFF 0x5F 2 VOUT linear v R/W word 9,800V TON_DELAY 0x60 2 Time linear msec R/W word 0ms TON_RISE 0x61 2 Time linear msec R/W word 0ms STATUS_WORD 0x79 2 Bit field N/A Read word N/A STATUS_JOUT 0x7A 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/ | OT_WARN_LIMIT | 0x51 | 2 | TEMP linear | Deg. C | R/W word | 125C | | | VIN_OV_FAULT_RESPONSE 0x56 1 Bit field N/A R/W byte 0xC0 POWER_GOOD_ON 0x5E 2 VOUT linear V R/W word 11,100V POWER_GOOD_OFF 0x5F 2 VOUT linear V R/W word 9,800V TON_DELAY 0x60 2 Time linear msec R/W word 0ms TON_RISE 0x61 2 Time linear msec R/W word 0ms STATUS_WORD 0x79 2 Bit field N/A Read word N/A STATUS_VOUT 0x7A 1 Bit field N/A Read byte N/A STATUS_IOUT 0x7B 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A <td></td> <td>0x55</td> <td>2</td> <td></td> <td></td> <td></td> <td>65V</td> | | 0x55 | 2 | | | | 65V | | | POWER_GOOD_ON | | 0x56 | 1 | Bit field | N/A | R/W byte | 0xC0 | | | POWER_GOOD_OFF | POWER_GOOD_ON | 0x5E | 2 | VOUT linear | V | | 11,100V | | | TON_DELAY | | 0x5F | | VOUT linear | | | 9,800V | | | STATUS_WORD | | 0x60 | 2 | | msec | | 0ms | | | STATUS_WORD 0x79 2 Bit field N/A Read word N/A STATUS_VOUT 0x7A 1 Bit field N/A Read byte N/A STATUS_IOUT 0x7B 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_TEMPERATURE 0x7D 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A READ_VIN 0x8B 2 VOUT linear Amps Read word N/A <t< td=""><td>TON_RISE</td><td>0x61</td><td>2</td><td>Time linear</td><td>msec</td><td>R/W word</td><td></td></t<> | TON_RISE | 0x61 | 2 | Time linear | msec | R/W word | | | | STATUS_IOUT 0x7B 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_TEMPERATURE 0x7D 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A READ_VIN 0x88 2 VIN linear v Read word N/A READ_VOUT 0x8B 2 VOUT linear v Read word N/A READ_IOUT 0x8C 2 IOUT linear Amps Read word N/A READ_IEMPI 0x8D 2 TEMP linear Deg. C Read word N/A PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 I6 bit unsigned N/A R/W word 0x2000 MFR_VOUT_READ_CAL_GAIN 0xD3 2 I6 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A
R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W byte 0xD101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0xD1 | STATUS_WORD | 0x79 | 2 | Bit field | N/A | Read word | N/A | | | STATUS_IOUT 0x7B 1 Bit field N/A Read byte N/A STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_TEMPERATURE 0x7D 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A READ_VIN 0x88 2 VIN linear v Read word N/A READ_VOUT 0x8B 2 VOUT linear v Read word N/A READ_IOUT 0x8C 2 IOUT linear Amps Read word N/A READ_IEMPI 0x8D 2 TEMP linear Deg. C Read word N/A PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 I6 bit unsigned N/A R/W word 0x2000 MFR_VOUT_READ_CAL_GAIN 0xD3 2 I6 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 I6 bit unsigned N/A R/W byte 0xD101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0xD1 | | 0x7A | | Bit field | | Read byte | N/A | | | STATUS_INPUT 0x7C 1 Bit field N/A Read byte N/A STATUS_TEMPERATURE 0x7D 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A READ_VIN 0x8B 2 VIN linear v Read word N/A READ_VOUT 0x8B 2 VOUT linear v Read word N/A READ_IOUT 0x8C 2 IOUT linear Amps Read word N/A READ_TEMPI 0x8D 2 TEMP linear Deg. C Read word N/A PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word | | 0x7B | 1 | Bit field | | | | | | STATUS_TEMPERATURE 0x7D 1 Bit field N/A Read byte N/A STATUS_CML 0x7E 1 Bit field N/A Read byte N/A READ_VIN 0x88 2 VIN linear V Read word N/A READ_VOUT 0x8B 2 VOUT linear V Read word N/A READ_IOUT 0x8C 2 IOUT linear Amps Read word N/A READ_TEMPI 0x8C 2 IOUT linear Amps Read word N/A PMBUS_REVISION 0x8D 2 TEMP linear Deg. C Read word N/A PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W wor | STATUS_INPUT | 0x7C | 1 | Bit field | N/A | | N/A | | | STATUS_CML 0x7E 1 Bit field N/A Read byte N/A READ_VIN 0x88 2 VIN linear v Read word N/A READ_VOUT 0x8B 2 VOUT linear v Read word N/A READ_IOUT 0x8C 2 IOUT linear Amps Read word N/A READ_TEMPI 0x8D 2 TEMP linear Deg. C Read word N/A PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_OFF 0xD2 2 VOUT linear N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W w | | | 1 | | | | | | | READ_VIN 0x88 2 VIN linear V Read word N/A READ_VOUT 0x8B 2 VOUT linear V Read word N/A READ_IOUT 0x8C 2 IOUT linear Amps Read word N/A READ_TEMP1 0x8D 2 TEMP linear Deg. C Read word N/A PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word 0x2000 MFR_VIN_READ_CAL_OFF 0xD2 2 VOUT linear N/A R/W word MS MFR_VIN_READ_CAL_OFF 0xD4 2 VIN linear N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A | STATUS_CML | 0x7E | 1 | Bit field | N/A | | N/A | | | READ_VOUT 0x8B 2 VOUT linear V Read word N/A READ_IOUT 0x8C 2 IOUT linear Amps Read word N/A READ_TEMPI 0x8D 2 TEMP linear Deg. C Read word N/A PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word 0x2000 MFR_VOUT_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_ARA_CONFIG 0xE0 1 Bit field <t< td=""><td>READ_VIN</td><td>0x88</td><td>2</td><td>VIN linear</td><td></td><td></td><td>N/A</td></t<> | READ_VIN | 0x88 | 2 | VIN linear | | | N/A | | | READ_IOUT | | 0x8B | 2 | VOUT linear | | Read word | | | | READ_TEMP1 | | | | | Amps | | | | | PMBUS_REVISION 0x98 1 Bit Field n/a Read byte 1.2 MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word 0x2000 MFR_VOUT_READ_CAL_OFF 0xD2 2 VOUT linear N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFF 0xD4 2 VIN linear N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x01 | READ_TEMP1 | | | | | | - | | | MFR_DEVICE_TYPE 0xD0 2 Custom N/A R/W word 0x00AA MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word 0x2000 MFR_VOUT_READ_CAL_OFF 0xD2 2 VOUT linear N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_OFF 0xD4 2 VIN linear N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | | | Ĭ. | | | | | MFR_VOUT_READ_CAL_GAIN 0xD1 2 16 bit unsigned N/A R/W word 0x2000 MFR_VOUT_READ_CAL_OFF 0xD2 2 VOUT linear N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_OFF 0xD4 2 VIN linear N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | 2 | | | | | | | MFR_VOUT_READ_CAL_OFF 0xD2 2 VOUT linear N/A R/W word MS MFR_VIN_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_OFF 0xD4 2 VIN linear N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | 0xD1 | | | | | | | | MFR_VIN_READ_CAL_GAIN 0xD3 2 16 bit unsigned N/A R/W word MS MFR_VIN_READ_CAL_OFF 0xD4 2 VIN linear N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | | | | | | | | MFR_VIN_READ_CAL_OFF 0xD4 2 VIN linear N/A R/W word MS MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | | | · | | | | | MFR_IOUT_CAL_GAIN 0xD6 2 16 bit unsigned N/A R/W word MS MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | | | | | | | | MFR_IOUT_CAL_OFFSET 0xD7 2 IOUT linear N/A R/W word MS MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | | | | | | | | MFR_FW_REV 0xDB 2 4 BCD digits N/A Read byte 0x1101 MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | | | | | | | | MFR_ARA_CONFIG 0xE0 1 Bit field N/A R/W byte 0x00 MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | | | | | | | | MFR_PGOOD_POLARITY 0xE2 1 Bit field N/A R/W byte 0x01 | | | _ | • | | • | MS=Module specific ^{*}Some Write commands are ignored until Write Protection is disabled using the MFR_DEVICE_TYPE (0xD0) command. These are identified by "lockout per MFR_DEVICE_TYPE" In the preceding detailed command descriptions. ### Mechanical Outline for QBDE084A0B41 - HZ Through-hole Module Dimensions are in millimeters and [inches]. **Tolerances:** $x.x \text{ mm} \pm 0.5 \text{ mm} [x.xx \text{ in.} \pm 0.02 \text{ in.}] \text{ (Unless otherwise indicated)}$ x.xx mm ± 0.25 mm [x.xxx in ± 0.010 in.] ^{*}Top side label includes OmniOn name, product designation, and data code. ^{**}
Standard pin tail length. Optional pin tail lengths shown in Table 2, Device Options ### **Recommended Pad Layouts** Dimensions are in millimeters and [inches]. **Tolerances:** x.x mm ± 0.5 mm [x.xx in. ± 0.02 in.[(unless otherwise indicated) x.xx mm ± 0.25 mm [x.xxx in ± 0.010 in.] | Pin Number | Pin Name | |------------|----------| | 1 | VIN(+) | | 2 | ON/OFF | | 3 | VIN(-) | | 4 | VOUT(-) | | 5 | SENSE(-) | | 6 | TRIM/C1 | | 7 | SENSE(+) | | 8 | VOUT(+) | | 9 | C2 | | 10 | SIG_GND | | 11 | DATA | | 12 | SMBALERT | | 13 | CLK | | 14 | ADDR1 | | 15 | ADDR0 | ### Hole and Pad diameter recommendation: | Pin Number | Hole Dia mm [in] | Pad Dia mm [in] | | | | |---------------------------|------------------|-----------------|--|--|--| | 1, 2, 3 | 1.6 [.063] | 2.1 [.083] | | | | | 9, 10, 11, 12, 13, 14, 15 | 1.0 [.039] | 1.5 [.059] | | | | | 4,5,7,8 | 2.2 [.087] | 3.2 [.126] | | | | ### **Packaging Details** All versions of the QBDE084A0B are supplied as standard in the plastic trays shown in Figure 27. ### **Tray Specification** Material PET (1mm) Max surface resistivity 109 -1011□/PET Color Clear Capacity 12 power modules Min order quantity 24 pcs (1 box of 2 full trays + 1 empty top tray) Each tray contains a total of 12 power modules. The trays are self-stacking and each shipping box for the QBDE084A0B module contains 2 full trays plus one empty hold-down tray giving a total number of 24 power modules. ### **Ordering Information** Please contact your OmniOn Sales Representative for pricing, availability and optional features. | Product Codes | Input Voltage | Output
Voltage | Output
Current | Efficiency | Connector
Type | MSL
Ra-ting | Com codes | |-------------------|----------------|-------------------|-------------------|------------|-------------------|----------------|-------------| | QBDE084A0B641-PHZ | 50V (40-60Vdc) | 12V | 84A | 96.5% | Through hole | 2a | 1600189257A | **Table 1. Device Codes** | | Characteristic | | | | Characte | er a | nd | Ро | siti | or | 1 | | | | Definition | |---------|---------------------|---|----|---|----------|------|--------|----|------|----|----|---|---|---|--| | | Form Factor | Q | | | | | | | | | | | | | Q = Quarter Brick | | | Family | | BD | | | | | | | | | | | | BD = BARACUDA Digital Series with | | Ratings | Designator | | טם | | | | | | | | | | | | PMBus interface | | Ratings | Input Voltage | | | Ε | | | | | | | | | | | E = 40V—60V | | | Output current | | | | 067A0 | | | | | | | | | | 067A0 = 67.0 Rated Output current | | | Output Voltage | | | | В | | | | | | | | | | B = 12.0V nominal | | | | | | | | | | | | | | | | | Omit = Default Pin Length shown in | | | | | | | | | | | | | | | | | Mechanical Outline Figures | | | Pin Length | | | | | | _ | | | | | | | | 6 = Pin Length: 3.68 mm ± 0.25mm , (0.145 | | | | | | | | | 8
6 | | | | | | | | in. ± 0.010 in.)8 = Pin Length: 2.79 mm ± | | | V 1. C II . | | | | | | О | | | | | | | - | 0.25mm , (0.110 in. ± 0.010 in.) | | | Action following | | | | | | | | | | | | | | Omi = Latching Mode | | | Protective | | | | | | | 4 | | | | | | | 4 = Auto-restart following shutdown | | | Shutdown | | | | | | | | | | | | | | (Overcurrent/Overvoltage) | | | 0 /0551 | | | | | | | | | | | | | | Omit = Positive Logic | | | On/Off Logic | | | | | | | | 1 | | | | | | 1 = Negative Logic | | | | | | | | | | | | - | | | | | 3 3 | | Options | Customer Specific | | | | | | | | | | ΧY | | | | XY= Customer Specific Modified Code, | | | Custoffier specific | | | | | | | | | | | | | | Omit for Standard Code | | | | | | | | | | | | | | | | | Omit = Standard open Frame Module | | | | | | | | | | | | | | Р | | | P= Forced droop Output for use in | | | Optional | | | | | | | | | | | | | | parallel applications (trim and sense | | | Features | | | | | | | | | | | | | | feature disable for –P option) | | | | | | | | | | | | | | | | | , , | | | | | | | | | | | | | | | | | H= Heat plate , for use with heat sinks or | | | | | | | | | | | | | | | Н | - | cold walls | | | | | | | | | | | | | | | | | Omit = RoHS 5/6, Lead Based Solder | | | RoHS | | | | | | | | | | | | | Z | Used | | | | | | | | | | | | | | | | | Z=RoHS 6/6 Compliant, Lead free | **Table 2. Device Options** ### **Contact Us** For more information, call us at 1-877-546-3243 (US) 1-972-244-9288 (Int'l) # **Change History (excludes grammar & clarifications)** | Revision | Date | Description of the change | |----------|------------|--------------------------------| | 4.3 | 18/11/2021 | Update as per template | | 4.4 | 01/16/2024 | Updated as per OmniOn template | ### **OmniOn Power Inc.** 601 Shiloh Rd. Plano, TX USA ### omnionpower.com We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power. This document does not convey license to any patent or any intellectual property right. Copyright© 2023 OmniOn Power Inc. All rights reserved.