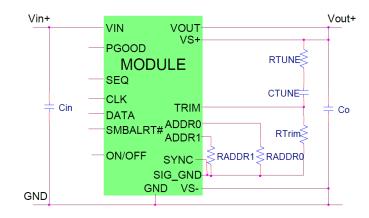


DATASHEET

7A Digital PicoDLynxIITM: Non-Isolated DC-DC Power Modules

4.5V_{dc} –14.4V_{dc} input; 0.51V_{dc} to 5.5V_{dc} output; 7A Output Current



Description

The 7A Digital PicoDLynxII[™] power modules are non-isolated dc-dc converters that can deliver up to 7A of output current. These modules operate over a wide range of input voltage ($V_{IN} = 4.5V_{dc}-14.4V_{dc}$) and provide a precisely regulated output voltage from 0.51V_{dc} to 5.5V_{dc}, programmable via an external resistor and PMBus™ control. Features include a digital interface using the PMBus^{TM#} protocol, remote On/Off, adjustable output voltage, over current and over temperature protection. The PMBus™ # interface supports a range of commands to both control and monitor the module. The module also includes the Tunable Loop™ feature that allows the user to optimize the dynamic response of the converter to match the load with reduced amount of output capacitance leading to savings on cost and PWB area.

Applications

- Distributed power architectures
- Intermediate bus voltage applications
- Telecommunications equipment
- Servers and storage applications
- Networking equipment
- Industrial equipment

Features

- Compliant to RoHS Directive 2011/65/EU and amended Directive (EU) 2015/863
- Compliant to REACH Directive (EC) No 1907/2006
- Compatible in a Pb-free or SnPb reflow environment (Z-versions)
- Compliant to IPC-9592 (September 2008), Category 2, Class II
- Compliant to REACH Directive (EC) No 1907/2006
- DOSA based
- Wide Input voltage range (4.5V_{dc}-14V_{dc})
- Output voltage programmable from 0.51Vdc to 5.5Vdc via external resistor PMBus™#
- Digital interface through the PMBus^{TM#} protocol
- Tunable Loop™ to optimize dynamic output voltage response
- Flexible output voltage sequencing EZ-SEQUENCE
- Power Good signal

- Fixed switching frequency with capability of external synchronization
- Output over current protection (non-latching)
- Over temperature protection
- Remote On/Off
- Ability to sink and source current
- Cost efficient open frame design
- Small size: 12.2 mm x 12.2 mm x 7.5 mm (0.48 in x 0.48 in x 0.295 in)
- Wide operating temperature range [-40°C to 85°C: Std; -40°C to 105°C: Ruggedized]
- ANSI/UL* 62368-1 and CAN/CSA† C22.2 No. 62368-1 Recognized, DIN VDE‡0868-1/A11:2017 (EN62368-1:2014/A11:2017)
- ISO** 9001 and ISO 14001 certified manufacturing facilities

FOOTNOTES

^{*} UL is a registered trademark of Underwriters Laboratories, Inc.

[†] CSA is a registered trademark of Canadian Standards Association.

[‡] VDE is a trademark of Verband Deutscher Elektrotechniker e.V.

^{**} ISO is a registered trademark of the International Organization of Standards

 $^{^{\}sharp}$ The PMBus name and logo are registered trademarks of the System Management Interface Forum (SMIF)

Technical Specifications

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage	All	V_{IN}	-0.3	15	V
Continuous					
VS, SMBALERT#, SEQ	All		-0.3	7	V
CLK, DATA, SYNC	All			3.6	V
Operating Ambient Temperature	All	T _A STANDARD	-40	85	°C
(see Thermal Considerations section)		RUGGEDIZED	-40	105	C
Storage Temperature	All	T_{stg}	-55	125	°C

Electrical Specifications

Unless otherwise indicated, specifications apply overall operating input voltage, resistive load, and temperature conditions.

Parameter	Device	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	All	V _{IN}	4.5		14.4	V _{dc}
Maximum Input Current (V _{IN} =4.5V to 14V, I _O =I _O , _{max})	All	I _{IN,max}			7	A _{dc}
Input No Load Current	V _{O, set} = 0.6 V _{dc}	I _{IN} ,No load		29		mA
$(V_{IN}=12V_{dc}, IO=0, module enabled)$	V _{O, set} = 5.5V _{dc}	I _{IN,No load}		60		mA
Input Stand-by Current (V _{IN} = 12V _{dc} , module disabled)	All	I _{IN,stand-by}		16		mA
Inrush Transient	All	l²t			1	A ² s
Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 1µH source impedance; V _{IN} =4.5 to 14V, I _O =I _{O,max} ; See Test Configurations)	All			20		mA _{p-p}
Input Ripple Rejection (120Hz)	All			-76		dB
Output Voltage Set-point accuracy over entire output range						
0 to 85°C, Vo=over entire range	All	Vo, set	-0.5		+0.5	% V _O , set
-40 to 85°C, Vo=over entire range	All	V_{O} , set	-1		+1	% V _O , set
Voltage Regulation ¹						
Line Regulation	(V _{IN} =V _{IN, min} to V _{IN} , max)			5		mV
	(12V _{IN} ±20%)			2		mV
	All			6		mV
Load (Io=Io, min to Io, max) Regulation	≤1.2V _{out}			1		mV

¹Worst case Line and load regulation data, all temperatures, from design verification testing as per IPC9592.

Electrical Specifications (continued)

Parameter	Device	Symbol	Min	Тур	Max	Unit
Adjustment Range (selected by an external resistor) (Some output voltages may not be possible depending on the input voltage – see Feature Descriptions Section)	All	Vo	0.6		5.5	V_{dc}
PMBus Adjustable Output Voltage Range	All	V _{O,adj}	-15	0	+10	%V _{O,set}
PMBus Output Voltage Adjustment Step Size	All			0.4		$\%V_{O,set}$
Remote Sense Range	All				0.5	V_{dc}
Output Ripple and Noise on nominal output $(V_{IN}=V_{IN}, n_{om} \text{ and } I_{o}=I_{o, min} \text{ to } I_{o, max} C_{o}=0.1 \mu F // 3x22 \mu F ceramic capacitors)$ Peak-to-Peak (5Hz to 20MHz bandwidth)	All		_	17		mV_{pk-pk}
RMS (5Hz to 20MHz bandwidth)	All			5		mV_{rms}
External Capacitance ² Without the Tunable Loop TM $ESR \geq 1 \ m\Omega$ With the Tunable Loop TM	All	C _{O, max}	3x22	_	7x22	μF
ESR \geq 0.15 m Ω	All	C _{O, max}	3x22		1000	uF
ESR ≥ 10 mΩ	All	C _{O, max}	3x22		5000	μF
Output Current (in either sink or source mode)	All	I _O	0		7	A _{dc}
Output Current Limit Inception (Hiccup Mode) (current limit does not operate in sink mode)	All	I _O , lim		125		% I _{O,max}
Output Short-Circuit Current (Vo≤250mV) (Hiccup Mode)	All	I _{O, s/c}		3.9		A _{rms}
Efficiency	$V_{O,set} = 0.6V_{dc}$	η		78.6%		%
V _{IN} = 12V _{dc} , T _A =25°C	$V_{O,set} = 1.2V_{dc}$	η		87.7%		%
$I_O=I_{O, max}$, $V_O=V_{O, set}$	$V_{O,set} = 1.8V_{dc}$	η		91.2%		%
	$V_{O,set} = 2.5V_{dc}$	η		93.2%		%
	$V_{O,set} = 3.3V_{dc}$	η		94.6%		%
	$V_{O,set} = 5.0 V_{dc}$	η		96%		%
Switching Frequency	All	fsw		500		kHz
Frequency Synchronization	All					
Synchronization Frequency Range (2 x f _{switch})	All		950	1000	1050	kHz
High-Level Input Voltage	All	V_{IH}	2			V
Low-Level Input Voltage	All	VIL			0.4	V
Minimum Pulse Width, SYNC	All	t _{SYNC}	100			ns
Maximum SYNC rise time	All	t _{SYNC_SH}	100			ns

 $^{^{2}}$ External capacitors may require using the new Tunable Loop[™] feature to ensure that the module is stable as well as getting the best transient response. See the Tunable Loop[™] section for details.

General Specifications

Parameter	Device	Min	Тур	Max	Unit
Calculated MTBF (I _O =0.8I _{O, max,} T _A =40°C) Telecordia Issue 3Method 1 Case 3	All		81,291,063		Hours
Weight			2.2 (0.078)		g (oz.)

Feature Specifications

Unless otherwise indicated, specifications apply overall operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

On/Off Signal Interface Vin=Vin, min to Vin, min; open collector or equivalent, Signal referenced to GND) Device code with suffix "4" - Positive Logic (See Ordering Information) Logic High (Module ON) Input High Voltage All Vin 2.1 — 7 V Logic Low (Module OFF) Input Low Current Input Low Voltage All Vin 0.2 — 0.8 V Device Code with no suffix - Negative Logic (See Ordering Information) (On/OFF pin is open collector/drain logic input with external pull-up resistor, signal referenced to GND) Logic High (Module OFF) Input High Current Input High Voltage All Vin 2.1 — 7 Vec Logic Low (Module ON) Input High Voltage All Vin 2.1 — 7 Vec Logic Low (Module ON) Input High Voltage All Vin 2.1 — 7 Vec Logic Low (Module ON) Input low Current Input Low Voltage All Vin 0.2 — 0.8 Vec Turn-On Delay and Rise Times Vin Vin 1.0 — 0.3 mA Input Low Voltage Turn-On Delay and Rise Times Vin Vin 1.0 — 0.2 — 0.8 Vec Turn-On Delay and Rise Times Vin Vin 1.0 — 0.5 mA Input Low Voltage Turn-On Delay and Rise Times Vin Vin 1.0 — 0.5 mA Input Low Voltage Turn-On Delay and Rise Times Vin Vin 1.0 — 0.6 msec Vin Vin 1.0 — 0.6 msec Vin 2.0 min tant at which volv off input is enabled and then input power is applied (delay from instant at which volv off is enabled until Vin 2.0 — 0.6 msec Vin Vin 1.0 — 0.6 msec Vin 2.0 min to 1.0 min to 1.0 mse) With or without maximum external capacitance Output voltage Rise time (time for Vo to rise from 10% of Vin 1.0 msec Vin 1.0 msec Vin 2.0 min to 1.0 msec Vin 1.0 msec Vin 2.0 msec Vin 2.0 msec Vin 2.0 msec Vin 2.0 msec No 2.0 msec Vin 2.0 msec Vin 2.0 msec V	Parameter	Device	Symbol	Min	Тур	Max	Unit
Vin = Vin, min to Vin, max; open collector or equivalent, Signal referenced to GND) Device code with suffix "4" - Positive Logic (See Ordering Information) Logic High (Module ON) Input High Current All Int - 17 μA Input High Current All Vit 2.1 - 7 V V V V V V V V V	On/Off Signal Interface						
Signal referenced to GND Device code with suffix "4" - Positive Logic See Ordering Information Logic High (Module ON) Input High Current All Int - 17 V Logic Low (Module OFF) Input Low Current Input Low Voltage All V _{IH} 2.1 - 7 V V Logic Low (Module OFF) Input Low Voltage All V _{IL} -0.2 - 0.8 V Device Code with no suffix - Negative Logic See Ordering Information See Ordering Information Con/OFF pin is open collector/drain logic input with external pull-up resistor; signal referenced to GND) Logic High (Module OFF) Input High Current All Int - 3 mA Input High Voltage All V _{IH} 2.1 - 7 V _{dc} V _{dc} V _{dc} Logic Low (Module ON) Input low Current All Int - 0.3 mA Input High Voltage All V _{IH} 2.1 - 7 V _{dc} V _{dc}	_						
Device code with suffix "4" - Positive Logic (See Ordering Information) Logic High (Module ON) Input High Current Input High Voltage All ViH 2.1 - 7 V Logic Low (Module OFF) Input Low Voltage All ViL Input High Current Input High Current Input High Current Input High Voltage All ViL Input Inpu							
See Ordering Information Logic High (Module ON) Logic High (Module ON) Logic High (Module ON) Logic Logic Low (Module OFF) Logic Logic (See Ordering Information) Logic High (Module OFF) Logic Logic (See Ordering Information) Logic High (Module OFF) Logic Log							
Logic High (Module ON)	S S S S S S S S S S S S S S S S S S S						
Input High Current All Int 2.1 - 7 V							
Input High Voltage		All	I _{IH}			17	μA
Logic Low (Module OFF) Input Low Current All IIL — — 2	. •	All	VIH	2.1		7	-
Input Low Current	Logic Low (Module OFF)						
Input Low Voltage	,	All	lu lu			2	uА
Device Code with no suffix – Negative Logic (See Ordering Information) (On/OFF pin is open collector/drain logic input with external pull-up resistor; signal referenced to GND) Logic High (Module OFF) Input High Current Input High Voltage All V _{IH} 2.1 -7 V _{dc} Logic Low (Module ON) Input low Current All I _{IL} I _{IR} Input Low Voltage All V _{IL} -0.2 -0.8 V _{IG} Turn-On Delay and Rise Times (V _{IN} =V _{IN, nom,} I _O =I _{O, max} , V _O to within ±1% of steady state) Case 1: On/Off input is enabled and then input power is applied (delay from instant at which V _{IN} = V _{IN, min} until V _O = 10% of V _O , set) Case 2: Input power is applied for at least one second and then the On/Off input is enabled delay from instant at which Von/Off senabled until V _O = 10% of V _O , set) Output voltage Rise time (time for Vo to rise from 10% of V _O , set) Output voltage overshoot (T _A = 25°C V _{IN} = V _{IN, min} to V _{IN, max} , I _O = I _O , min to I _{O, max}) With or without maximum external capacitance Over Temperature Protection (See Thermal Considerations section) All Tref: "C Tracking Accuracy (Power-Up: 2V/ms) All V _{SEQ} = V _O All V _{SEQ} = V _O Dound V _{SEQ} - V _O	· ·	All		-0.2			•
See Ordering Information Con/OFF pin is open collector/drain logic input with external pull-up resistor; signal referenced to GND							
external pull-up resistor; signal referenced to GND) Logic High (Module OFF) Input High Current Input High Voltage All ViH 2.1							
external pull-up resistor; signal referenced to GND) Logic High (Module OFF) Input High Current Input High Voltage All ViH 2.1	(On/OFF pin is open collector/drain logic input with						
Input High Current							
Input High Current	Logic High (Module OFF)						
Input High Voltage		All	I _{IH}	_		3	mA
Logic Low (Module ON)		All	V _{IH}	2.1		7	V_{dc}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c c c } \hline \text{Input Low Voltage} & \text{All} & \text{V}_{\text{IL}} & -0.2 & -0.8 & \text{V}_{\text{dc}} \\ \hline \text{Turn-On Delay and Rise Times} & & & & & & & & & & & & & & & & & & &$	1 - '	All	I _{II}			0.3	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i i	All		-0.2		0.8	V_{dc}
Case 1: On/Off input is enabled and then input power is applied (delay from instant at which $V_{IN} = V_{IN,min}$ until $V_{O} = 10\%$ of V_{O} , set) Case 2: Input power is applied for at least one second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until $V_{O} = 10\%$ of V_{O} , set) Output voltage Rise time (time for Vo to rise from 10% of V_{O} , set to 90% of V_{O} , set) Output voltage overshoot ($T_{A} = 25^{\circ}\text{C V}_{IN} = V_{IN,min}$ to $V_{IN,max}, I_{O} = I_{O}$, min to $I_{O,max}$) With or without maximum external capacitance Over Temperature Protection (See Thermal Considerations section) PMBus Over Temperature Warning Threshold * Tracking Accuracy (Power-Up: 2V/ms) All $V_{SEQ} = V_{O}$ 100 mV V_{O} mV							
power is applied (delay from instant at which $V_{\text{IN}} = V_{\text{IN,min}}$ until $V_{\text{o}} = 10\%$ of $V_{\text{o, set}}$) Case 2: Input power is applied for at least one second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until $V_{\text{o}} = 10\%$ of $V_{\text{o, set}}$) Output voltage Rise time (time for Vo to rise from 10% of $V_{\text{o, set}}$) Output voltage overshoot ($T_{\text{A}} = 25^{\circ}\text{C V}_{\text{IN}} = V_{\text{IN,min}}$ to $V_{\text{IN,max,Io}} = I_{\text{o}}$, min to $I_{\text{o}, \text{max}}$) With or without maximum external capacitance Over Temperature Protection (See Thermal Considerations section) PMBus Over Temperature Warning Threshold * Tracking Accuracy (Power-Up: 2V/ms) (Power-Down: 2V/ms) All $V_{\text{SEQ}} = V_{\text{o}}$ all $V_{\text{SEQ}} = V_{\text{o}}$ all $V_{\text{SEQ}} = V_{\text{o}}$ and $V_{\text{SEQ}} = V_{\text{o}}$	$(V_{IN}=V_{IN, nom}, I_O=I_{O, max}, V_O \text{ to within } \pm 1\% \text{ of steady state})$						
V _{IN} = V _{IN, min} until V _o = 10% of V _o , set) Case 2: Input power is applied for at least one second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until All T _{delay} 0.4 msec V _o = 10% of V _o , set) All T _{rise} 2.8 msec Output voltage Rise time (time for Vo to rise from 10% of V _o , set) All T _{rise} 2.8 msec Output voltage overshoot (T _A = 25°C V _{IN} = V _{IN} , min to V _{IN} , max, Io = Io, min to Io, max) 3.0 % V _o , set With or without maximum external capacitance Tref. °C Over Temperature Protection (See Thermal Considerations section) All T _{ref} . °C PMBus Over Temperature Warning Threshold * All T _{WARN} 115 °C Tracking Accuracy (Power-Up: 2V/ms) (Power-Down: 2V/ms) All V _{SEQ} -V _o All V _{SEQ} -V _o 100 mV							
Case 2: Input power is applied for at least one second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until $V_{\circ} = 10\%$ of V_{\circ} , set) Output voltage Rise time (time for Vo to rise from 10% of V_{\circ} , set to 90% of V_{\circ} , set) Output voltage overshoot $(T_{A} = 25^{\circ}\text{C V}_{IN} = V_{IN, \min} \text{ to V}_{IN, \max}, I_{\circ} = I_{\circ}, \min \text{ to } I_{\circ}, \max)$ With or without maximum external capacitance Over Temperature Protection $(See Thermal Considerations section)$ PMBus Over Temperature Warning Threshold * Tracking Accuracy (Power-Up: 2V/ms) (Power-Down: 2V/ms) All $V_{SEQ} = V_{\circ}$ 100 mV $V_{SEQ} = V_{\circ}$ 100 mV $V_{SEQ} = V_{\circ}$ 100 mV		All	T_{delay}		0.6		msec
second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until $V_{o} = 10\%$ of $V_{o, set}$) Output voltage Rise time (time for Vo to rise from 10% of $V_{o, set}$ to 90% of $V_{o, set}$) Output voltage overshoot $V_{o} = 25^{\circ}\text{C V}_{\text{IN}} = V_{\text{IN, min}}$ to $V_{\text{IN, max}}, V_{o} = V_{o}$, win to $V_{o} = V_{o}$ and $V_{o} = V_{o}$ an							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
Trom instant at which Von/Off is enabled until $V_o = 10\%$ of $V_{o, set}$) Output voltage Rise time (time for Vo to rise from 10% of $V_{o, set}$ to 90% of $V_{o, set}$) Output voltage overshoot $(T_A = 25^{\circ}\text{C V}_{\text{IN}} = V_{\text{IN, min}} \text{ to } V_{\text{IN, max}}, I_O = I_O, \text{ min to } I_{O, \text{max}})$ With or without maximum external capacitance Over Temperature Protection (See Thermal Considerations section) PMBus Over Temperature Warning Threshold * Tracking Accuracy (Power-Up: 2V/ms) (Power-Down: 2V/ms) All $V_{\text{SEQ}} = V_o$ All $V_{\text{SEQ}} = V_o$ 2.8 msec All T_{rise} 2.8 msec All T_{rise} C Tracking Accuracy (Power-Up: 2V/ms) (Power-Down: 2V/ms) All $V_{\text{SEQ}} = V_o$ All $V_{\text{SEQ}} = V_o$ 200 mV		All	Tdelay		0.4		msec
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- delay				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	All	T _{rise}		2.8		msec
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						7.0	0/ \/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						3.0	% V O, set
	·		Т.				°C
PMBus Over Temperature Warning Threshold * All T_{WARN} 115 °C Tracking Accuracy (Power-Up: 2V/ms) All $V_{SEQ} - V_o$ 100 mV (Power-Down: 2V/ms) All $V_{SEQ} - V_o$ 200 mV		All					
Tracking Accuracy (Power-Up: 2V/ms) All $V_{SEQ} - V_o$ 100 mV (Power-Down: 2V/ms) All $V_{SEQ} - V_o$ 200 mV	,	ΛII			115		
(Power-Down: 2V/ms) All V _{SEQ} –V _o 200 mV	·				113	100	
			_				
	$(V_{IN, min} \text{ to } V_{IN, max}; I_{O, min} \text{ to } I_{O, max} V_{SEQ} < V_o)$	711	V SEQ -VO			200	1117

Feature Specifications (Continued)

Parameter	Device	Symbol	Min	Тур	Max	Units
Input Undervoltage Lockout (V _{out} ≤ 3.3V _o)						
Turn-on Threshold	All			4.25		V_{dc}
Turn-off Threshold	All			4.05		V_{dc}
Hysteresis	All			0.2		V_{dc}
PMBus Adjustable Input Under Voltage Lockout	All		4		14	V_{dc}
Thresholds			7		17	v ac
Resolution of Adjustable Input Under Voltage	All		250			mV
Threshold	All		250			1117
PGOOD (Power Good)						
Signal Interface Open Drain, V _{supply} £ 5V _{DC}						
Overvoltage threshold for PGOOD ON	All			108.33		$\%V_{O,set}$
Overvoltage threshold for PGOOD OFF	All			112.5		$\%V_{O,set}$
Undervoltage threshold for PGOOD ON	All			91.67		$\%V_{O,set}$
Undervoltage threshold for PGOOD OFF	All			87.5		$\%V_{O,set}$
Pulldown resistance of PGOOD pin	All			40	70	Ω
Sink current capability into PGOOD pin	All				5	mA

^{*} Over temperature Warning – Warning may not activate before alarm and unit may shutdown before warning

Digital Interface Specifications

Unless otherwise indicated, specifications apply overall operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
PMBus Signal Interface Characteristics						
Input High Voltage (CLK, DATA)		V_{IH}	2.1		3.6	V
Input Low Voltage (CLK, DATA)		V_{IL}			0.8	V
Input high level current (CLK, DATA)		I _{IH}	-10		10	μA
Input low level current (CLK, DATA)		I _{IL}	-10		10	μA
Output Low Voltage (CLK, DATA, SMBALERT#)	I _{out} =2mA	V_{OL}			0.4	V
Output high level open drain leakage current (DATA, SMBALERT#)	V _{OUT} =3.6V	Іон	0		10	μΑ
Pin capacitance		Co		0.7		pF
PMBus Operating frequency range	Slave Mode	F _{РМВ}	10		400	kHz
Data hold time	Receive Mode Transmit Mode	t _{HD:DAT}	0 300			ns
Data setup time		t _{su:DAT}	250			ns
Measurement System Characteristics						
Output current measurement range		I_{RNG}	0		10	А
Output current measurement accuracy @12V _{in} , 25°C to 85°C		I _{ACC}	-7		7%	Max rated Current
Temperature measurement accuracy @12V _{in} , 0°C to 85°C		T _{ACC}		±5*		°C
$V_{ extsf{OUT}}$ measurement range		$V_{\text{OUT(rng)}}$	0		6	V
V _{OUT} measurement accuracy		$V_{\text{OUT, ACC}}$	-2		2	%

^{*}Accuracy as per PWM Controller Datasheet

Characteristic Curves

The following figures provide typical characteristics for the 7A Digital PicoDLynxII™ at 0.6V₀ and 25°C

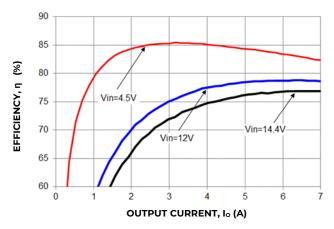


Figure 1. Converter Efficiency verses output current

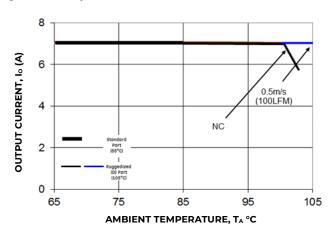


Figure 2. Derating Output Current verses Ambient Temperature and Airflow.

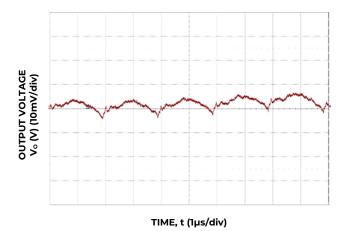


Figure 3. Typical output ripple (C_0 =3+-x22 μ F ceramic, V_{IN} = 12V, I_0 = $I_{omax.}$).

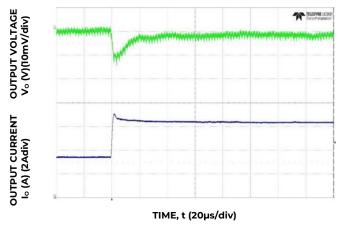


Figure 4. Transient Response to Dynamic Load Change from 50% to 100% at 12V $_{\rm in}$, C $_{\rm out}$ = 6x47uF + 4x330uF, CTune=22nF, $R_{\rm Tune}$ =237 Ω

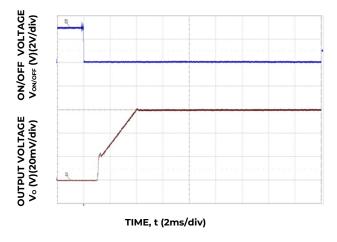


Figure 5. Typical Start-up Using On/Off Voltage (Io = Io,max).

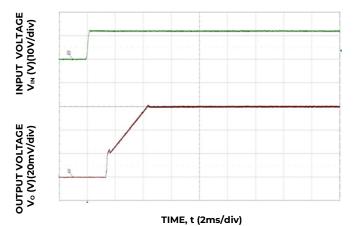


Figure 6. Typical Start-up Using Input Voltage (V_{IN} = 12V, I_o = $I_{o,max}$).

Characteristic Curves

The following figures provide typical characteristics for the 7A Digital PicoDLynxII™ at 1.2V₀ and 25°C

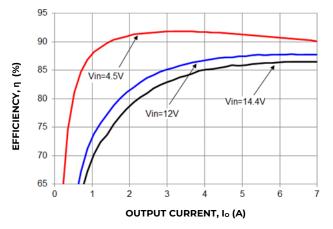


Figure 7. Converter Efficiency verses output current

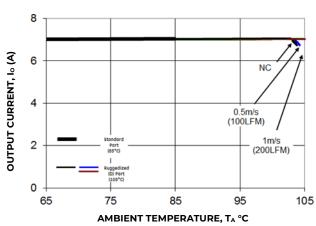


Figure 8. Derating Output Current verses Ambient Temperature and Airflow.

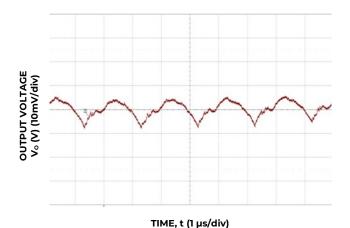


Figure 9. Typical output ripple (Co=3x22 μ F ceramic, V_{IN} = 12V, I_0 = $I_{o,max,}$).

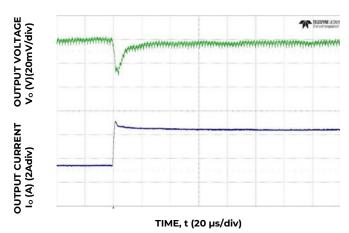


Figure 10. Transient Response to Dynamic Load Change from 50% to 100% at 12V_{in}, C_{out} = 6x47uF + 1x330 uF, C_{Tune} =12 nF, R_{Tune} =300 Ω

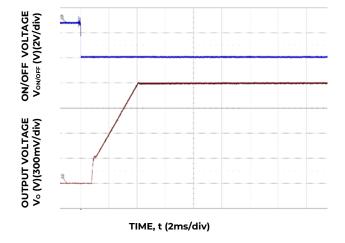


Figure 11. Typical Start-up Using On/Off Voltage (Io = Io,max).).

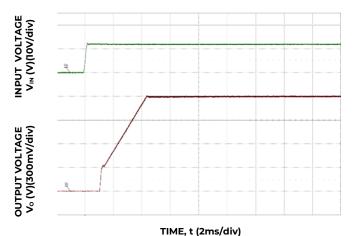


Figure 12. Typical Start-up Using Input Voltage (V_{IN} = 12V, I_o = $I_{o,max}$).

Characteristic Curves

The following figures provide typical characteristics for the 7A Digital PicoDLynxII™ at 1.8V₀ and 25°C

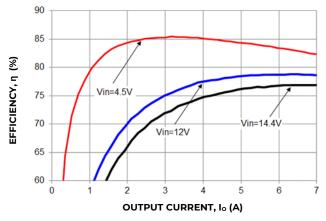


Figure 13. Converter Efficiency verses output current

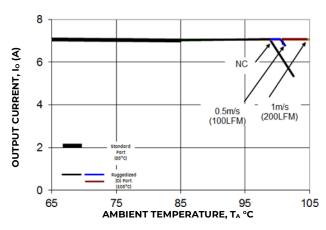


Figure 14. Derating Output Current verses Ambient Temperature and Airflow.

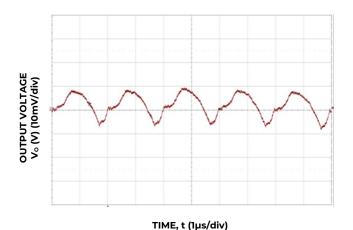


Figure 15. Typical output ripple ($C_0=3x22\mu F$ ceramic, $V_{IN}=12V$,

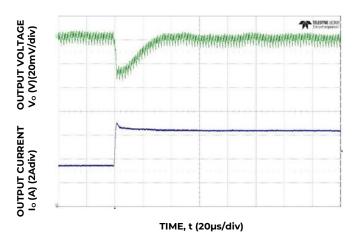


Figure 16. Transient Response to Dynamic Load Change from 50% to 100% at 12Vin, C_{out} = 3x47uF + 1x330uF, C_{Tune} =3.9nF, R_{Tune} =300 Ω

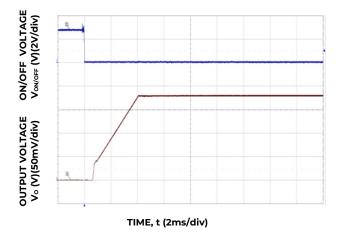


Figure 17. Typical Start-up Using On/Off Voltage (Io = Io,max).).

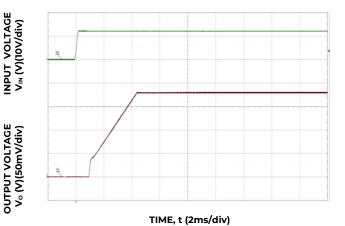


Figure 18. Typical Start-up Using Input Voltage (V_{IN} = 12V, I_{o} = $I_{\text{o,max}}$).

Characteristic Curves

The following figures provide typical characteristics for the 7A Digital PicoDLynxII™ at 2.5V₀ and 25°C

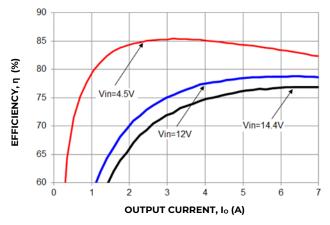


Figure 19. Converter Efficiency verses output current

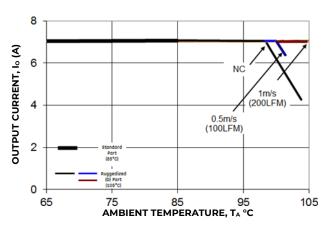


Figure 20. Derating Output Current verses Ambient Temperature and Airflow.

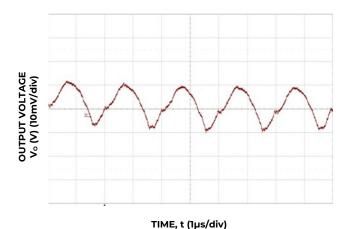


Figure 21. Typical output ripple and noise ($C_0=3x22\mu F$ ceramic, $V_{IN}=12V$, $I_0=I_{0,max}$).

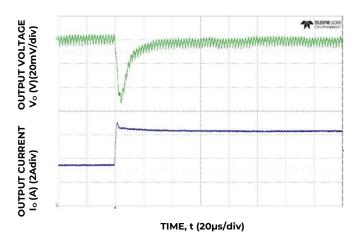


Figure 22. Transient Response to Dynamic Load Change from 50% to 100% at 12V_{in}, C_{out} = 6x47uF, C_{Tune} =3.9nF, R_{Tune} =300 Ω

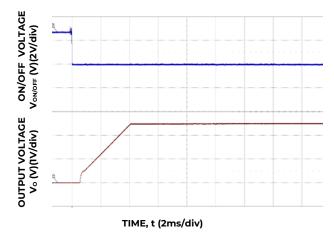


Figure 23. Typical Start-up Using On/Off Voltage ($I_0 = I_{0,max}$).

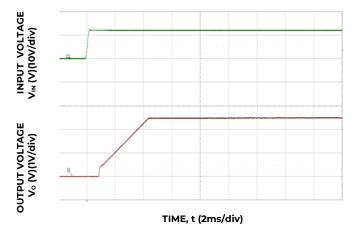


Figure 24. Typical Start-up Using Input Voltage (V_{IN} = 12V, I_{o} = $I_{\text{o,max}}$).

Characteristic Curves

The following figures provide typical characteristics for the 7A Digital PicoDLynxIITM at $3.3V_{\circ}$ and $25^{\circ}C$

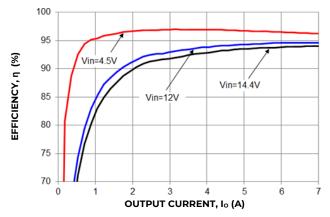


Figure 25. Converter Efficiency verses output current

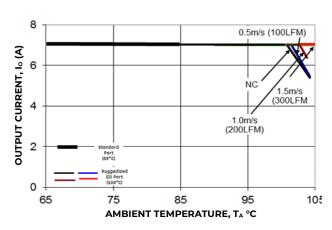


Figure 26. Derating Output Current verses Ambient Temperature and Airflow.

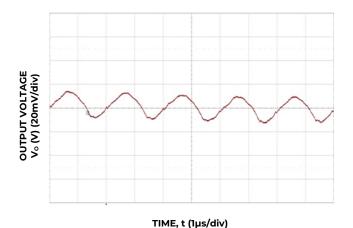


Figure 27. Typical output ripple and noise ($C_0=3x22\mu F$ ceramic, $V_{IN}=12V,\ I_o=I_{o,max,}$).

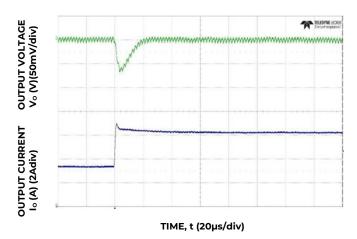


Figure 28. Transient Response to Dynamic Load Change from 50% to 100% at $12V_{in}$, C_{out} = 5x47uF, C_{Tune} =1.8 nF, R_{Tune} =300 Ω

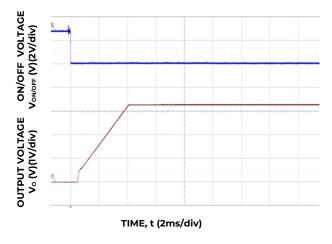


Figure 29. Typical Start-up Using On/Off Voltage (Io = Io,max).).

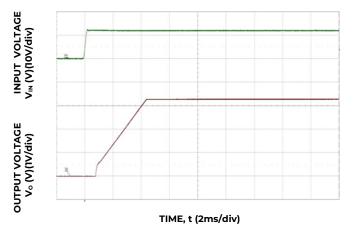


Figure 30. Typical Start-up Using Input Voltage $(V_{IN} = 12V, I_o = I_{o,max}).$

PJT007_DS

Characteristic Curves

The following figures provide typical characteristics for the 7A Digital PicoDLynxII™ at 5.0V₀ and 25°C

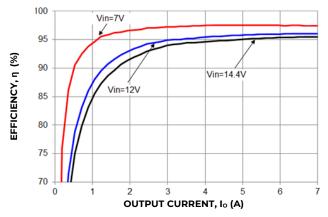


Figure 31. Converter Efficiency verses output current

Figure 32. Derating Output Current verses Ambient Temperature and Airflow.

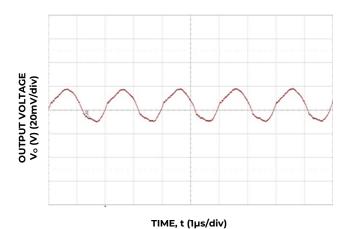


Figure 33. Typical output ripple and noise $(C_0=3x22\mu F \text{ ceramic}, V_{IN}=12V, I_o=I_{o,max,}).$

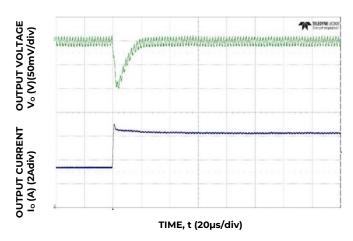


Figure 34. Transient Response to Dynamic Load Change from 50% to 100% at $12V_{in}$, C_{out} = 3x47uF, C_{Tune} =1.8 nF, R_{Tune} =300 Ω

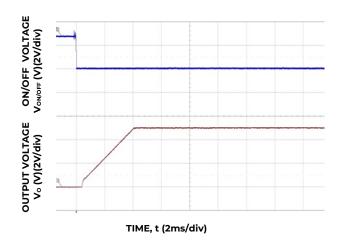


Figure 35. Typical Start-up Using On/Off Voltage (I_o = $I_{o,max,l}$).

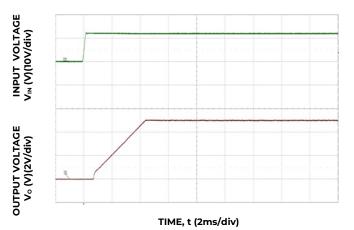


Figure 36. Typical Start-up Using Input Voltage (V_{IN} = 12V, I_{o} = $I_{\text{o,max}}$).

Design Considerations

Input Filtering

The 7A Digital PicoDLynxII™ module should be connected to a low ac-impedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pin of the module, to minimize input ripple voltage and ensure module stability.

To minimize input voltage ripple, ceramic capacitors are recommended at the input of the module. Figure 31 shows the input ripple voltage for various output voltages at 7A of load current with 2x22 µF or 4x22 µF ceramic capacitors and an input of 12V.

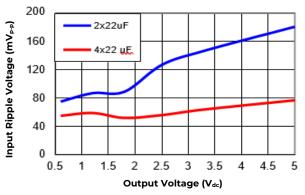


Figure 37. Input ripple voltage for various output voltages with 2x22 μ F or 4x22 μ F ceramic capacitors at the input (7A load). Input voltage is 12V.

Output Filtering

These modules are designed for low output ripple voltage and will meet the maximum output ripple specification with 0.1 μF ceramic and 3x22 μF ceramic capacitors at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change.

To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR polymer and ceramic capacitors are recommended to improve the dynamic response of the module. Figure 32 provides output ripple information for different external capacitance values at various Vo and a full load current of 7A. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table. Optimal performance of the module can be achieved by using the Tunable Loop™ feature described later in this data sheet.

For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table. Optimal performance of the module can be achieved by using the Tunable LoopTM feature described later in this data sheet.

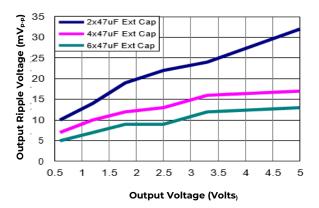


Figure 38. Output ripple voltage for various output voltages with external 2x47 μ F, 4x47 μ F or 6x47 μ F ceramic capacitors at the output (7A load). Input voltage is 12V.

Safety Considerations

For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL ANSI/UL* 62368-1 and CAN/CSA+ C22.2 No. 62368-1 Recognized, DIN VDE 0868-1/ A11:2017 (EN62368-1:2014/A11:2017)

For the converter output to be considered meeting the Requirements of safety extra-low voltage (SELV) or ES1, the input must meet SELV/ES1 requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

An external 20A Littelfuse 456 series fast-acting fuse or equivalent is recommended on the ungrounded input lead.

Analog Feature Descriptions

Remote On/Off

The module can be turned ON and OFF either by using the ON/OFF pin (Analog interface) or through the PMBus interface (Digital). The module can be configured in a number of ways through the PMBus interface to react to the two ON/OFF inputs:

- Module ON/OFF can be controlled only through the analog interface (digital interface ON/OFF commands are ignored)
- Module ON/OFF can be controlled only through the PMBus interface (analog interface is ignored)
- Module ON/OFF can be controlled by either the analog or digital interface

The default state of the module (as shipped from the factory) is to be controlled by the analog interface only. If the digital interface is to be enabled, or the module is to be controlled only through the digital interface, this change must be made through the PMBus. These changes can be made and written to non-volatile memory on the module so that it is remembered for subsequent use.

Analog On/Off

The 7A Digital PicoDLynxII™ power modules feature an On/Off pin for remote On/Off operation. Two On/Off logic options are available. In the Positive Logic On/Off option, (device code suffix "4" – see Ordering Information), the module turns ON during a logic High on the On/Off pin and turns OFF during a logic Low. With the Negative Logic On/Off option, (no device code suffix, see Ordering Information), the module turns OFF during logic High and ON during logic Low. The On/Off signal should be always referenced to ground. For either On/Off logic option, leaving the On/Off pin disconnected will turn the module ON when input voltage is present.

For positive logic modules, the circuit configuration for using the On/Off pin is shown in Figure 39. When the external transistor Q1 is in the OFF state, the internal PWM #Enable is pulled up internally, thus turning the module ON. When transistor Q1 is turned ON, the On/Off pin is pulled low, and consequently the internal PWM Enable signal is pulled low and the module is OFF.

For negative logic On/Off modules, the circuit configuration is shown in Fig. 40. The On/Off pin should be pulled high with an external pull-up resistor. When transistor Q2 is in the OFF state, the On/Off pin is pulled high, which pulls the internal ENABLE# High and the module is OFF. To turn the module ON, Q2 is turned ON pulling the On/Off pin low resulting in the PWM ENABLE# pin going Low. The maximum voltage

allowed on the On/Off pin is 7V. If Vin is used as a source, then a suitable external resistor R1 must be used to ensure that the voltage on the On/Off pin does not exceed 7V.

Digital On/Off

Please see the Digital Feature Descriptions section.

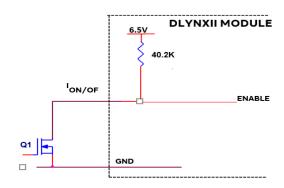


Figure 39. Circuit configuration for using positive On/Off logic.

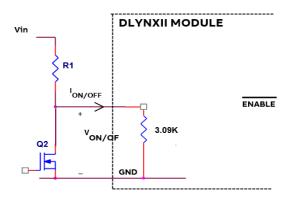


Figure 40. Circuit configuration for using negative On/Offlogic.

Monotonic Start-up and Shutdown

The module has monotonic start-up and shutdown behavior for any combination of rated input voltage, output current and operating temperature range.

Startup into Pre-biased Output

The module can start into a prebiased output as long as the prebias voltage is 0.5V less than the set output voltage.

Analog Output Voltage Programming

The output voltage of the module is programmable to any voltage from $0.6V_{dc}$ to $5.5V_{dc}$ by connecting a resistor between the Trim and SIG_GND pins of the module. Certain restrictions apply on the output voltage set point depending on the input voltage. These are shown in the Output Voltage vs. Input Voltage Set Point Area plot in Fig. 35.

The Upper Limit curve shows that for output voltages lower than IV, the input voltage must be lower than the maximum of 14.4V. The Lower Limit curve shows that for output voltages higher than 3.3V, the input voltage needs to be higher than the minimum of 4.5V.

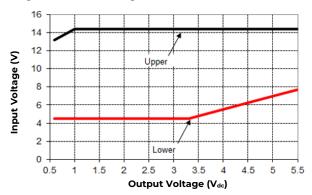
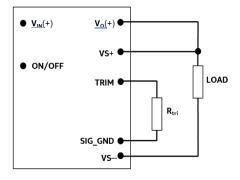



Figure 41. Output Voltage vs. Input Voltage Set Point Area plot showing limits where the output voltage can be set for different input voltages.

Caution – Do not connect SIG_GND to GND elsewhere in the layout

Figure 42. Circuit configuration for programming output voltage using an external resistor.

Without an external resistor between Trim and SIG_GND pins, the output of the module will be 0.6Vdc. To calculate the value of the trim resistor, R_{trim} for a desired output voltage, should be as per the following equation:

$$R_{trim} = \begin{bmatrix} \frac{12}{\text{(Vo - 0.6)}} \end{bmatrix} K\Omega$$

 R_{trim} is the external resistor in $k\Omega$ Vo is the desired output voltage. Table 1 provides R_{trim} values required for some common output voltages.

VO, set (V)	R _{trim} (KΩ)
0.6	Open
0.9	40
1.0	30
1.2	20
1.5	13.33
1.8	10
2.5	6.316
3.3	4.444
5.0	2.727

Table 1

Digital Output Voltage Adjustment

Please see the Digital Feature Descriptions section.

Remote Sense

The power module has a Remote Sense feature to minimize the effects of distribution losses by regulating the voltage between the sense pins (VS+ and VS-). The voltage drop between the sense pins and the VOUT and GND pins of the module should not exceed 0.5V.

Analog Voltage Margining

The Output voltage margining can be implemented in the module by connecting a resistor, R_{margin-up}, from the Trim pin to the ground pin for margining-up the output voltage and by connecting a resistor, R_{margin-down}, from the Trim pin to output pin for margining-down. Figure 43 shows the circuit configuration for output voltage margining. The POL Programming Tool or Power Module Wizard(PMW), available at Go.omnion/Industrial under the Downloads section, also calculates the values of R_{margin-up} and R_{margin-down} for a specific output voltage and % margin. Please consult your local OmniOn technical representative for additional details

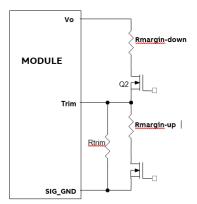


Figure 43. Circuit Configuration for margining Output voltage.

Digital Output Voltage Margining

Please see the Digital Feature Descriptions section.

Output Voltage Margining

The power module includes a sequencing feature, EZ- SEQUENCE that enables users to implement various types of output voltage sequencing in their applications. This is accomplished via an additional sequencing pin. When not using the sequencing feature, leave it unconnected.

When an analog voltage is applied to the SEQ pin, the output voltage tracks this voltage until the output reaches the set- point voltage. The final value of the SEQ voltage must be set higher than the set-point voltage of the module. The output voltage follows the voltage on the SEQ pin on a one-to-one basis. By connecting multiple modules together, multiple modules can track their output voltages to the voltage applied on the SEQ pin.

For proper voltage sequencing, first, input voltage is applied to the module. The On/Off pin of the module is left unconnected (or tied to GND for negative logic modules or tied to VIN for positive logic modules) so that the module is ON by default. After applying input voltage to the module, a minimum 10msec delay is required before applying voltage on the SEQ pin. This delay gives the module enough time to complete its internal power-up soft-start cycle. During the delay time, the SEQ pin should be held close to ground (nominally 50mV ± 20 mV). This is required to keep the internal op-amp out of saturation thus preventing output overshoot during the start of the sequencing ramp. By selecting resistor R1 (see fig. 44) according to the following equation

R1 =
$$\frac{26150}{6.5 - 0.05}$$
 = 4052 ohms, (4.02K Std.)

The voltage at the sequencing pin will be 50mV when the sequencing signal is at zero.

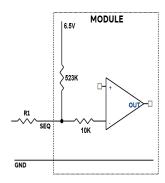


Figure 44. Circuit showing connection of the sequencing signal to the SEQ pin .

After the 10msec delay, an analog voltage is applied to the SEQ pin and the output voltage of the module will track this voltage on a one-to-one volt bases until the output reaches the set- point voltage. To initiate simultaneous shutdown of the modules, the SEQ pin voltage is lowered in a controlled manner. The output voltage of the modules tracks the voltages below their set-point voltages on a one-to-one basis. A valid input voltage must be maintained until the tracking and output voltages reach ground potential.

When using the EZ-SEQUENCETM feature to control start-up of the module, pre-bias immunity during start -up is disabled. The pre-bias immunity feature of the module relies on the module being in the diode-mode during start-up. When using the EZ- SEQUENCETM feature, modules goes through an internal set-up time of 10msec, and will be in synchronous rectification mode when the voltage at the SEQ pin is applied. This will result in the module sinking current if a pre-bias voltage is present at the output of the module. When pre-bias immunity during start-up is required, the EZ-SEQUENCETM feature must be disabled. For additional guidelines on using the EZ- SEQUENCETM feature please refer to Application Note AN04008 "Application Guidelines for Non-Isolated Converters: Guidelines for Sequencing of Multiple Modules", or contact the OmniOn technical representative for additional information.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range.

Digital Adjustable Overcurrent Warning

Please see the Digital Feature Descriptions section.

Overtemperature Protection

To provide protection in a fault condition, the unit is equipped with a thermal shutdown circuit. The unit will shut down if the over-temperature threshold of 120°C (typ) is exceeded at the thermal reference point T_{ref}. Please refer to Electrical characteristic table, over-temperature section on page 5. Once the unit goes into thermal shutdown it will then wait to cool before attempting to restart.

Digital Temperature Status via PMBus

Please see the Digital Feature Descriptions section.

Digitally Adjustable Output Over and Under Voltage Protection

Please see the Digital Feature Descriptions section.

Input Undervoltage Lockout

At input voltages below the input undervoltage lockout limit, the module operation is disabled. The module will begin to operate at an input voltage above the undervoltage lockout turn-on threshold.

Digitally Adjustable Input Undervoltage LockoutPlease see the Digital Feature Descriptions section.

Digitally Adjustable Power Good Thresholds

Please see the Digital Feature Descriptions section.

Synchronization

The module switching frequency can be synchronized to a signal with an external frequency within a specified range. Synchronization can be done by using the external signal applied to the SYNC pin of the module as shown in Fig. 45, with the converter being synchronized by the rising edge of the external signal. The module switches at half the SYNC frequency. The Electrical Specifications table specifies the requirements of the external SYNC signal. If the SYNC pin is not used, the module will free run at the default switching frequency. If synchronization is not being used, connect the SYNC pin to SIG_GND.

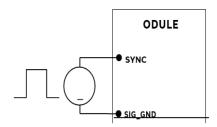


Figure 45. External source connections to synchronize switching frequency of the module.

Measuring Output Current and Output Voltage

Please see the Digital Feature Descriptions section.

Dual Layout

Identical dimensions and pin layout of Analog and Digital PicoDLynxII modules permit migration from one to the other without needing to change the layout. In both cases the trim resistor is connected between trim and signal ground. The output of the analog module cannot be trimmed down to 0.51V

Tunable Loop™

The module has a feature that optimizes transient response of the module called Tunable LoopTM.

External capacitors are usually added to the output of the module for two reasons: to reduce output ripple and noise (see Figure 38) and to reduce output voltage deviations from the steady-state value in the presence of dynamic load current changes. Adding external capacitance however affects the voltage control loop of the module, typically causing the loop to slow down with sluggish response. Larger values of external capacitance could also cause the module to become unstable.

The Tunable LoopTM allows the user to externally adjust the voltage control loop to match the filter network connected to the output of the module. The Tunable LoopTM is implemented by connecting a series R-C between the VS+ and TRIM pins of the module, as shown in Fig. 46. This R-C allows the user to externally adjust the voltage loop feedback compensation of the module.

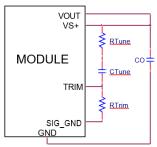


Figure. 46. Circuit diagram showing connection of RTUME and CTUNE to tune the control loop of the module.

Recommended values of R_{TUNE} and C_{TUNE} for different output capacitor combinations are given in Tables 2 and 3. Table 3 shows the recommended values of R_{TUNE} and C_{TUNE} for different values of ceramic output capacitors up to 1000uF that might be needed for an application to meet output ripple and noise requirements. Selecting RTUNE and C_{TUNE} according to Table 3 will ensure stable operation of the module.

In applications with tight output voltage limits in the presence of dynamic current loading, additional output capacitance will be required. Table 3 lists recommended values of R_{TUNE} and C_{TUNE} in order to meet 2% output voltage deviation limits for some common output voltages in the presence of a 3.5A to 7A step change (50% of full load), with an input voltage of 12V.

Please contact your OmniOn technical representative to obtain more details of this feature as well as for guidelines on how to select the right value of external R-C to tune the module for best transient performance and stable operation for other output capacitance values.

meet 2% output voltage deviation limits for some common output voltages in the presence of a 3.5A to 7A step change (50% of full load), with an input voltage of 12V.

Please contact your OmniOn technical representative to obtain more details of this feature as well as for guidelines on how to select the right value of external R-C to tune the module for best transient performance and stable operation for other output capacitance values.

C.	4x47µF	6x47μF	8x47μF	10x47µF	20x47μF
R _{TUNE}	300	300	300	300	300
C_{TUNE}	220p	330p	390p	470p	1.8n

Table 2. General recommended values of of RTUNE and CTUNE for Vin=12V and various external ceramic capacitor combinations.

V _o	5V	3.3V	2.5V	1.8V	1.2V	0.6V
				3x47uF	6x47uF	6x47uF
Co	3x47uf	5x47uF	6x47uF	+	+	+
				1x330uF	1x330uF	4x330uF
R _{TUNE}	300	300	300	300	300	237
C _{TUNE}	1000pF	1800pF	3900pF	3900pF	12nF	22nF
ΔV	78mV	52mV	37mV	31mV	20mV	11mV

Table 3. Recommended values of R_{TUNE} and C_{TUNE} to obtain transient deviation of 2% of V_{out} for a 3.5A step load with Vin=12V.

Note: The capacitors used in the Tunable Loop tables are 47 μ F/3 m Ω ESR ceramic and 330 μ F/9 m Ω ESR polymer capacitors.

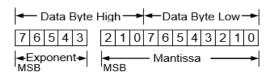
Power Module Wizard

OmniOn offers a free web based easy to use tool that helps users simulate the Tunable Loop performance of the PJT007. Go to <u>omnionpower.com</u> and sign up for a free account and use the module selector tool. The tool also offers downloadable Simplis/Simetrix models that can be used to assess transient performance, module stability, etc.

Digital Feature Descriptions

PMBus Interface Capability

The 7A Digital PicoDLynxII[™] power modules have a PMBus interface that supports both communication and control. The PMBus Power Management Protocol Specification can be obtained from www.pmbus.org. The modules support a subset of version 1.1 of the specification (see Table 6 for a list of the specific commands supported). Most module parameters can be programmed using PMBus and stored as defaults for later use.


All communication over the module PMBus interface must support the Packet Error Checking (PEC) scheme. The PMBus master must generate the correct PEC byte for all transactions, and check the PEC byte returned by the module.

The module also supports the SMBALERT# response protocol whereby the module can alert the bus master if it wants to talk. For more information on the SMBus alert response protocol, see the System Management Bus (SMBus) specification.

The module has non-volatile memory that is used to store configuration settings. Not all settings programmed into the device are automatically saved into this non-volatile memory, only those specifically identified as capable of being stored can be saved (see Table 6 for which command parameters can be saved to non-volatile storage).

PMBus Data Format

For commands that set thresholds, voltages or report such quantities, the module supports the "Linear" data format among the three data formats supported by PMBus. The Linear Data Format is a two byte value with an 11-bit, two's complement mantissa and a 5-bit, two's complement exponent. The format of the two data bytes is shown below:

The value is of the number is then given by Value = Mantissa x 2 Exponent

PMBus Addressing

The power module can be addressed through the PMBus using a device address. The module has 64 possible addresses (0 to 63 in decimal) which can be set using resistors connected from the ADDRO and

ADDR1 pins to GND. Note that some of these addresses (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 40, 44, 45, 55 in decimal) are reserved according to the SMBus specifications and may not be useable. The address is set in the form of two octal (0 to 7) digits, with each pin setting one digit. The ADDR1 pin sets the high order digit and ADDR0 sets the low order digit. The resistor values suggested for each digit are shown in

Table 4 (1% tolerance resistors are recommended). Note that if either address resistor value is outside the range specified in Table 4, the module will respond to address 127.

Digit	Resistor Value $(K\Omega)$
0	11
1	18.7
2	27.4
3	38.3
4	53.6
5	82.5
6	127
7	187

Table 4

The user must know which I²C addresses are reserved in a system for special functions and set the address of the module to avoid interfering with other system operations. Both 100kHz and 400kHz bus speeds are supported by the module. Connection for the PMBus interface should follow the High Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 for the 400kHz bus speed or the Low Power DC specifications in section 3.1.2. The complete SMBus specification is available from the SMBus web site, smbus.org.

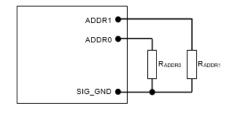


Figure 47. Circuit showing connection of resistors used to set the PMBus address of the module.

Operation (01h)

This is a paged register. The OPERATION command can be use to turn the module on or off in conjunction with the ON/OFF pin input. It is also used to margin up or margin down the output voltage

PMBus Enabled On/Off

The module can also be turned on and off via the PMBus interface. The OPERATION command is used to actually turn the module on and off via the PMBus, while the ON_OFF_CONFIG command configures the combination of analog ON/OFF pin input and PMBus commands needed to turn the module on and off. Bit [7] in the OPERATION command data byte enables the module, with the following functions: The module can also be turned on and off via the PMBus interface. The OPERATION command is used to actually turn the module on and off via the PMBus, while the ON_OFF_CONFIG command configures the combination of analog ON/OFF pin input and PMBus commands needed to turn the module on and off. Bit [7] in the OPERATION command data byte enables the module, with the following functions:

0 : Output is disabled1 : Output is enabled

This module uses the lower five bits of the ON_OFF_CONFIG data byte to set various ON/OFF options as follows:

Bit Position	4	3	2	1	0
Access	r/w	r/w	r/w	r/w	r
Function	PU	CMD	CPR	POL	CPA
Default Value	1	0	1	1	0

PU: Sets the default to either operate any time input power is present or for the ON/OFF to be controlled by the analog ON/OFF input and the PMBus OPERATION command. This bit is used together with the CP, CMD and ON bits to determine startup.

Bit Value	Action
0	Module powers up any time power is presentregardless of state of the analog ON/OFF pin
1	Module does not power up until commanded by the analog ON/OFF pin and the OPERATION command as programmed in bits [2:0] of the ON_OFF_CONFIG register.

CMD: The CMD bit controls how the device responds to the OPERATION command.

Bit Value	Action
0	Module ignores the ON bit in the OPERATION command
	Module responds to the ON bit in the OPERATION command

CPR: Sets the response of the analog ON/OFF pin. This bit is used together with the CMD, PU and ON bits to determine startup.

Bit Value	Action	
0	Module ignores the analog ON/OFF pin, i.e.ON/OFF is only controlled through the PMBUS via the OPERATION command	
1	Module requires the analog ON/OFF pin to be asserted to start the unit	

CPA: Sets the action of the analog ON/OFF pin when turning the controller OFF. This bit is internally read and cannot be modified by the user

PMBus Adjustable Soft Start Rise Time

The soft start rise time can be adjusted in the module via PMBus. When setting this parameter, make sure that the charging current for output capacitors can be delivered by the module in addition to any load current to avoid nuisance tripping of the overcurrent protection circuitry during startup. The TON_RISE command sets the rise time in ms, and allows choosing soft start times between 600µs and 9ms, with possible values listed in Table 5. Note that the exponent is fixed at -4 (decimal) and the upper two bits of the mantissa are also fixed at 0.

Rise Time	Exponent	Mantissa
600 µ s	11100	00000001010
900µs	11100	00000001110
1.2ms	11100	00000010011
1.8ms	11100	00000011101
2.7ms	11100	00000101011
4.2ms	11100	00001000011
6.0ms	11100	00001100000
9.0ms	11100	00010010000

Table 5

Output Voltage Adjustment Using the PMBus

The VREF_TRIM parameter is important for a number of PMBus commands related to output voltage trimming, and margining. Each of the 2 output voltages of the module can be set as the combination of the voltage divider formed by RTrim and a $20k\Omega$ upper divider resistor inside the module, and the internal reference voltage of the module. The reference voltage VREF is be nominally set at 600mV, and the output regulation voltage is then given by:

$$V_{OUT} = \frac{2000 + RTrim}{RTrim} \times VREF$$

Hence the module output voltage is dependent on the value of RTrim which is connected external to the module.

The VREF_TRIM parameter is used to apply a fixed offset voltage to the reference voltage can be specified using the "Linear" format and two bytes. The exponent is fixed at -9 (decimal). The resolution of the adjustment is 7 bits, with a resulting step size of approximately 0.4%. The maximum trim range is -20% to +10% of the nominal reference voltage(600mV) in 2mV steps. Possible values range from - 120mV to +60mV. The exception is at 0.6Vout where the allowable trim range is only -90mV to +60mV to prevent the module from operating at lower than 0.51Vdc. When trimming the voltage below 0.6V, the module max. input voltage operating point also reduces proportionally. As shown earlier in Fig.41, the maximum permissible input voltage is 13V. For any voltage trimmed below 0.6V, the maximum input voltage will have to be reduced by the same factor.

When PMBus commands are used to trim or margin the output voltage, the value of VREF is what is changed inside the module, which in turn changes the regulated output voltage of the module.

The nominal output voltage of the module is adjustable with a minimum step size of 0.4% over a +10% to -20% range from nominal using the VREF_TRIM command over the PMBus.

The VREF_TRIM command can be used to apply a fixed offset voltage to either of the output voltage command value using the "Linear" mode with the exponent fixed at –9 (decimal). The value of the offset voltage is given by

 $V_{REF(offset)} = VREF_TRIM \times 2^{-9}$

This offset voltage is added to the voltage set through the divider ratio and nominal V_{REF} to produce the trimmed output voltage. If a value outside of the +10%/-20% adjustment range is given with this command, the module will set it's output voltage to the upper or lower limit value (as if VOUT_TRIM, assert SMBALRT#, set the CML bit in STATUS_BYTE and the invalid data bit in STATUS_CML.

Applications Example

For a design where the output voltage is 1.8V and the output needs to be trimmed down by 20mV.

- The internal reference voltage is 0.6V. So we need to determine how the 20mV translates to a change in the internal reference voltage.
- Divider Ratio = $V_{ref}/V_{out} = 0.6/1.8 = 0.33$
- Hence a 20mV change at 1.8Vo requires a 0.33x20mV = 6.6mV change in the reference voltage.
- V_{ref(offset)} = (6.6)/1000 = 0.0066 Volts (- sign since we are trimming down)
- $V_{ref(offset)} = V_{ref_Trim} \times 2^{-9}$
- V_{ref_Trim} = V_{ref(offset)} x 512
- $V_{ref(offset)} = -0.0066 \times 512 = -3.3 = -3$ (rounded to nearest integer

Output Voltage Margining Using the PMBus The module can also have its output margined via PMBus commands. The command STEP_VREF_MARGIN_HIGH will set the margin high voltage, while the command STEP_VREF_MARGIN_LOW sets the margin low voltage. Both the STEP_VREF_MARGIN_HIGH and STEP_VREF_MARGIN_LOW commands will use the "Linear" mode with the exponent fixed at -9 (decimal). Two bytes are used for the mantissa with the upper bit [7] of the high byte fixed at 0. The actual margined output voltage is a combination of the STEP_VREF_MARGIN_HIGH or STEP_VREF_MARGIN_LOW and the VREF_TRIM values as shown below. The net permissible voltage range change is - 30% to +10% for the margin high command and -20% to 0% for the margin low command

V_{REF (MH)} =

(STEP_VREF_MARGIN_HIGH ☐ VREF_TRIM) x 2-9

Applications Example

For a design where the output voltage is 1.8V and the output needs to be trimmed up by 100mV (within – 20% of Vo).

- The internal reference voltage is 0.6V. So we need to determine how the 100mV translates to a change in the internal reference voltage.
- Divider Ratio = $V_{ref}/V_{out} = 0.6/1.8 = 0.33$
- Hence a 100mV change at 1.2Vo requires a 0.33x100mV = 33mV change in the reference voltage.
- $V_{REF(MH)} = -(33)/1000 = -0.033$ Volts (- sign since we are margining down)
- V_{REF(ML)} = (Step_V_{ref_margin_low} + V_{ref_trim}) x 2 -9
- Assume V_{ref_Trim} = 3 here (from V_{Ref_Trim} example earlier)
- Step_ $V_{ref_margin_low} = V_{REF(ML)} \times 512 V_{ref_trim}$
- Step_V_{ref_margin_low} = -0.033 x 512 (-3) = -16.9+3 = -13.9
 = -14 (rounded to nearest integer)

The module will support the margined high or low voltages using the OPERATION command. Bits [5:2] are used to enable margining as follows:

00XX : Margin Off

0101 : Margin Low (Act on Fault)
0110 : Margin Low (Act on Fault)
1001 : Margin High (Act on Fault)
1010 : Margin High (Act on Fault)

PMBus Adjustable Overcurrent Warning

The module can provide an overcurrent warning via the PMBus. The threshold for the overcurrent warning can be set using the parameter

IOUT_OC_WARN_LIMIT. This command uses the "Linear" data format with a two byte data word where the upper five bits [7:3] of the high byte represent the exponent and the remaining three bits of the high byte [2:0] and the eight bits in the low byte represent the mantissa. The exponent is fixed at –1 (decimal). The upper five bits of the mantissa are fixed at 0 while the lower six bits are programmable with a default value of 19A (decimal). The resolution of this warning limit is 500mA. The value of the IOUT_OC_WARN_LIMIT can be stored to non-volatile memory using the STORE_DEFAULT_ALL command

Temperature Status via PMBus

The module will provide information related to temperature of the module through the READ_TEMPERATURE_2 command. The command returns external temperature in degrees Celsius. This command will use the "Linear" data format with a two byte data word where the upper five bits [7:3] of the high byte will represent the exponent and the remaining three bits of the high byte [2:0] and the eight bits in the low byte will represent the mantissa. The exponent is fixed at 0 (decimal). The lower 11 bits are the result of the ADC conversion of the external temperature

PMBus Adjustable Output Over, Under Voltage Protection and Power Good

The module has a common command to set the PGOOD, VOUT_UNDER_VOLTAGE(UV) and VOUT_OVER_VOLTAGE (OV) limits as a percentage of nominal. Refer to Table 6 of the next section for the available settings. The PMBus command VOUT_OVER_VOLTAGE (OV) is used to set the output over voltage threshold from two possible values: +12.5% or +16.67% of the commanded output voltage for each output.

The module provides a Power Good (PGOOD) that is implemented with an open-drain output to indicate that the output voltage is within the regulation limits of the power module. The PGOOD signal is deasserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going outside the specified thresholds. The PGOOD thresholds are user selectable via the PMBus (the default values are as shown in the Feature Specifications Section). Each threshold is set up symmetrically above and below the nominal value. The PGL (POWERGOODLOW) command will set the output voltage level above which PGOOD is asserted (lower threshold). The PGH(POWERGOODHIGH) command will set the level above which the PGOOD command is de-asserted. This command will also set two thresholds symmetrically placed around the nominal output voltage. Normally, the PGL threshold is set higher than the PGH threshold.

The PGOOD terminal can be connected through a pullup resistor (suggested value $100 \text{K}\Omega$) to a source of 5VDC or lower. The current through the PGood terminal should be limited to a max value of 5mA

PMBus Adjustable Input Undervoltage Lockout

The module allows for adjustment of the input under voltage lockout and hysteresis. The command VIN_ON allows setting the input voltage turn on threshold for each output, while the VIN_OFF command will set the input voltage turn off threshold. For the VIN_ON command, possible values are 4.25V to 16V in variable steps. For the VIN_OFF command, possible values are 4V to 15.75V in 0.5V steps. If other values are entered for either command, they is mapped to the closest of the allowed values.

Both the VIN_ON and VIN_OFF commands use the "Linear" format with two data bytes. The upper five bits will represent the exponent (fixed at -2) and the remaining 11 bits will represent the mantissa. For the mantissa, the four most significant bits are fixed at 0.

Measurement of Output Current and Voltage

The module is capable of measuring key module parameters such as output current and voltage and providing this information through the PMBus interface.

Measuring Output Current Using the PMBus

The module measures current by using the inductor winding resistance as a current sense element. The inductor winding resistance is then the current gain factor used to scale the measured voltage into a current reading. This gain factor is the argument of the IOUT_CAL_GAIN command, and consists of two bytes in the linear data format. The exponent uses the upper five bits [7:3] of the high data byte in two-s complement format and is fixed at –4 (decimal). The remaining 11 bits in two's complement binary format represent the mantissa. During manufacture, each module is calibrated by measuring and storing the current gain factor into non-volatile storage. DONOT CHANGE THE FACTORY PROGRAMMED VALUE.

The current measurement accuracy is also improved by each module being calibrated during manufacture with the offset in the current reading. The IOUT_CAL_OFFSET command is used to store and read the current offset. The argument for this command consists of two bytes composed of a 5-bit exponent (fixed at -4d) and a 11-bit mantissa. This command has a resolution of 62.5mA and a range of -4000mA to +3937.5mA. DONOT CHANGE THE FACTORY PROGRAMMED VALUE.

The READ_IOUT command provides module average output current information. This command only supports positive or current sourced from the module. If the converter is sinking current a reading of 0 is provided. The READ_IOUT command returns two bytes of data in the linear data format. The resolution of the command is 62.5mA. The exponent uses the upper five bits [7:3] of the high data byte in two-s complement format and is fixed at –4 (decimal). The remaining 11 bits in two's complement binary format represent the mantissa with the 11th bit fixed at 0 since only positive numbers are considered valid.

Measuring Output Voltage Using the PMBus

The module provides output voltage information using the READ_VOUT command for each output. In this module the output voltage is sensed at the remote sense amplifier output pin so voltage drop to the load is not accounted for. The command will return two bytes of data all representing the mantissa while the exponent is fixed at -9 (decimal).

Reading the Status of the Module using the PMBus

The module supports a number of status information commands implemented in PMBus. However, not all features are supported in these commands. A 1 in the bit position indicates the fault that is flagged.

STATUS_BYTE: Returns one byte of information with a summary of the most critical device faults.

Bit Position	Flag	Default Value
7	X	0
6	OFF	0
5	VOUT Overvoltage	0
4	IOUT Overcurrent	0
3	VIN Undervoltage	0
2	Temperature	0
1	CML (Comm. Memory Fault)	0
0	None of the above	0

STATUS_WORD: Returns two bytes of information with a summary of the module's fault/warning conditions.

Bit Position	Flag	Default Value
7	X	0
6	OFF	0
5	VOUT Overvoltage	0
4	IOUT Overcurrent	0
3	VIN Undervoltage	0
2	Temperature	0
1	CML	0
	(Comm. Memory Fault)	
0	None of the above	0

Low Byte

Bit Position	Flag	Default Value
7	VOUT fault or warning	0
6	IOUT fault or warning	0
5	X	0
4	MFR	0
3	POWER_GOOD#	0
	(is negated)	
2	X	0
1	X	0
0	X	0

High Byte

STATUS_VOUT: Returns one byte of information relating to the status of the module's output voltage related faults.

Bit Position	Flag	Default Value
7	VOUT OV Fault	0
6	X	0
5	X	0
4	VOUT UV Fault	0
3	X	0
2	X	0
1	X	0
0	X	0

STATUS_IOUT: Returns one byte of information relating to the status of the module's output voltage related faults.

Bit Position	Flag	Default Value
7	IOUT OC Fault	0
6	X	0
5	IOUT OC Warning	0
4	X	0
3	X	0
2	X	0
1	X	0
0	X	0

STATUS_TEMPERATURE: Returns one byte of information relating to the status of the module's temperature related faults.

Bit Position	Flag	Default Value
7	OT Fault	0
6	OT Warning	0
5	X	0
4	X	0
3	X	0
2	X	0
1	X	0
0	X	0

STATUS_CML: Returns one byte of information relating to the status of the module's communication related faults.

Bit Position	Flag	Default Value
7	Invalid/Unsupported Command	0
6	Invalid/Unsupported Command	0
5	Packet Error Check Failed	0
4	Memory Fault Detected	0
3	X	0
2	X	0
1	Other Communication Fault	0
0	X	0

MFR_VIN_MIN: Returns minimum input voltage as two data bytes of information in Linear format (upper five bits are exponent – fixed at -2, and lower 11 bits are mantissa in two's complement format – fixed at 12)

MFR_VOUT_MIN: Returns minimum output voltage as two data bytes of information in Linear format (upper five bits are exponent – fixed at -10, and lower 11 bits are mantissa in two's complement format – fixed at 614)

MFR_SPECIFIC_00: Returns information related to the type of module and revision number. Bits [7:2] in the Low Byte indicate the module type (001111 corresponds to the PJT007 series of module), while bits [7:3] indicate the revision number of the module.

Bit Position	Flag	Default Value
7:2	Module Name	001111
1:0	Reserved	10

Low Byte

Bit Position	Flag	Default Value
7:3	Module Revision	None
	Number	
2:0	Reserved	000

High Byte

Summary of Supported PMBus Commands

Please refer to the PMBus 1.1 specification for more details of these commands.

Hex Code	Command		Brief Description								Non-Volatile Memory Storage
oode		Turn Module on o	or off.	Also u	sed to	marg	in the	outpu	t volta	ige .	
		Format						Bina			
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r/w	r	r/w	r/w	r/w	r/w	r	r	
		Function	On	Х		Ма	rgin		Χ	X	
		Default Value	0	0	0	0	0	0	Χ	Χ	
01	OPERATION	Bit 7: 0 Output so 1 Output so Margin: 00XX Ma 0101 Mar 0110 Mar 1001 Mar 1010 Mar	witchi rgin C gin Lo gin Lo gin Hi gin Hi	ng en Off ow (Ac ow (Ac igh (Ac gh (Ac	abled et on fa t on fa et on fa	ult) ault) ault)					
		Configures the O					comb	oinatio	n of a	nalog	
		ON/OFF pin and Format	PMB	is com			d Bina	NA C			
		Bit Position	7	6	5	signe 4	3	2	1	0	
02	ON_OFF_CONFIG	Access	r	r	r	r/w	r/w	r/w	r/w	r	
		Function	Χ	X	Х	pu	cmd		pol	сра	YES
		Default Value	0	0	0	1	0	j	1	0	
			Refer to Page 19 for details on pu, cmd, cpr, pol and cpa								
03	CLEAR_FAULTS	Clear any fault bits that may have been set, also releases the SMBALERT# signal ifthe device has been asserting it.									
		Used to control w current register's matches the valu (EEPROM) on the Format	ettino ue in t	g in th he dat	e mod	ule wl into r	nose c non-vo	omma	ind co memo	de	
		Bit Position	7	6	5	4	3	2	1	0	
			r/w	r/w	r/w	Χ	Х	Χ	Χ	Х	
			bit7	bit6	bit5	Χ	Χ	Χ	Χ	Χ	
		Default Value	0	0	0	Χ	Χ	Χ	Χ	Χ	
10	WRITE_PROTECT	Bit5: 0 – Enables a 1 – Disables a OPERATION a Bit 6: 0 – Enables 1 – Disables a and OPERA	all writ nd Of all wr all writ	tes exc N_OFF rites as tes exc	cept th _CONF perm cept fo	ne WR FIG (bi itted i r the \	ITE_PF t 6 and n bit5 WRITE	ROTEC d bit7 i or bit7 _PROT	must k TECT, F	pe 0) PAGE	YES
		Bit7: 0 – Enables all writes as permitted in bit5 or bit6									
		1 – Disables all command	l write	s exce	pt for	the W	RITE_F		:CT		
		C1 11 C11			d bit6 r					2001	
15	STORE_USER_ALL	Stores all of the c memory as the ne						gs in th	ne EEF	PROM	
								m the	non-		
16	RESTORE_USER_ALL	Restores all of the storable register settings from the non-volatile memory (EEPROM). The command should not be used while the device is actively switching							sed		

Summary of Supported PMBus Commands (continued)

Hex	Command			Brie	f Des	criptio	n				Non-Volatile
Code	Communication of the control of the	This command h		he hos				determ	nine ke	У	Memory Storage
		capabilities of th	emod	ule		•	15'				
		Format Bit Position	7	_	1	nsigne			7	0	
		Access	7 r	6 r	5 r	4 r	3 r	2 r	l r	0	
19	CAPABILITY	Function	PEC	1	D .	ALRT	ı	1	erved		
		Default Value	1	0	l i	1	0	0	0	0	
		PEC – 1 Supporte			1 -	1 -					
		SPD -01 – max of									
		ALRT – 1 – SMBAI									
		The module has These values car				ar and	Expon	ent se	et to -IC).	
				,					-	1	
		Bit Position	7	6	5	4	3	2	1	0	
20	VOUT_MODE	Access	r	r	r	r	r	r	r	r	1
		Function Default Value	0	Mode 0	0	1	0	Expone	ent Ti	1 1	-
						<u> </u>	U		Ĭ.	į į	
		Mode: Value fixe							ا ما د	:- 0	
		Exponent: Value Sets the value of									
			прис							·	
		Format Bit Position	7		1	o's cor		1	inary	0	
		Access	r	6 r	5 r	4 r	3 r	2 r	r	r	
		Function	'		xpone				ı <u>'</u> ∕lantiss		
		Default Value	1	1	1	1	0	0	0	0	
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r	r/w	r/w	r/w	r/w	r/w	r/w	r/w	
35	VIN_ON	Function		1		Man			1		YES
		Default Value	0	0	0]]	0	0	0	1	
		Exponent -2 (ded									
		The upper four b The lower seven				o with	a dofa	ult val	uo of 9	(doc)	
		Thiscorresponds								(dec).	
		 4.25, in steps 									
		 9.5V to 13V ir 									
		• 13V to 16V in	increr	nents	of 1V						
		Sets the value of	input	voltaç	ge at w	vhich th	ne mo	dule t	urns of	f	
		Format				o's cor		_	inary		
		Bit Position Access	7 r	6 r	5 r	4 r	3 r	2 r	l r	O r	
		Function	ı		xpone	nt '	'		ı <u>'</u> √antiss		
		Default Value	1	1	1	1	0	0	0	0	
		Bit Position	7	6	5	4	3	2	1	0	
		Access Function	r	r/w	r/w	r/w Man	r/w tissa	r/w	r/w	r/w	
36	VIN_OFF	Default Value	0	0	0	0	1	0	0	0	YES
50	VIIV_O11	Exponent -2 (ded	c), fixed	d Man	tissa	•			•		TL5
		The upper four b	its are	fixed	at 0	***		1. 1			
		The lower seven This corresponds					a defa	ult val	ue of 8	B(dec).	
		Allowable values		aciaui	t OI -	J V .					
		 4.00, in steps of 0.25V upto 9.75V. 									
		 10.25V to 11.75V in increments of 0.5V 									
		12V13.75V to 15.7	E\/ in :	noron	onto a	of 1\/					
		13./37 (0 15./	ا ۱۱۱۱ ۵ د	iicieii	101115	۱۷۱۱۷					

Summary of Supported PMBus Commands (continued)

Hex Code	Command			Brie	f Desc	riptio	n				Non-Volatile Memory Storage
		Returns the valu the measured o				ection	term	used t	to corr	ect	
		Format					Jnsigi	ned B	inary		
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r	r	r	r	r	r	r	r/w	
38	IOUT_CAL_GAIN	Function	'		xpone			Man	tissa	17 VV	YES
30	IOUT_CAL_GAIN	Default Value	1	T 0	0	0	1	0	0	V	125
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r/w	r/w					v r/w		
		Function	.,	1 .,		Man				1.7	
		Default Value	V	: Varia	ble ba			rv cali	bratio	n	
		Returns the valu									
		measured outpu			set coi	rection	i usec	1 10 00	iiect t	110	
		Format	at our		ar, two	o's cor	nnlen	ent b	inary		
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r	r	r	r	r	r/w	r	r	-
39	IOUT_CAL_OFFSET	Function	•		xpone		<u>'</u>	-	1antiss		YES
		Default Value	1	1	1	0	0	V	V	V	
		Bit Position	7	6	5	4	3	2	1	0	-
		Access	r	r	r/w	r/w	r/w	r/w	r/w	r/w	
		Function				Man	tissa				
		Default Value	V	: Varia	able ba	sed or	n facto	ry cal	ibratio	n	
		ets the output overcurrent fault level in A (cannot be changed									
		Format		Line	ar, two	o's cor	nplen	nent b	inary		
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r	r	r	r	r	r	r	r	
	IOUT_OC_FAULT_LIMIT	Function		E	xpone	nt	l	N	1antiss	sa	
46		Default Value	1	1	<u> </u>	1	1	0	0	0	YES
		Bit Position	7	6	5	4	3	2	1	0	-
		Access	r	r/w	r/w	r/w	r/w	r/w	r/w	r/w	-
		Function	'	1/ ۷۷	1, 00	,	tissa	17 VV	1/ ۷۷	1/ ۷۷	-
		Default Value	0	0			0	٦ .	7		-
	Value maybe locked			_	0	1	_	1	1	0	
		Determines mo									
		IOU_OC_FAULT ₋	_LIMIT	or a \	√OUT i	under	oltage/	e (UV)	fault		
		Format			Un	signed	l Rina	r\/			
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r	r	r/w	r/w	r/w	r	r	r	
		Function	X			RS [1]		X	X	X	
47	IOUT_OC_FAULT_RESPONSE	Default Value	0	0]]	1	1	0	0	YES
					•	•	•	•			
		RS[2:0] – Retry Setting									
		000 Unit does r	not att	empt	to res	tart					
		111 Unit goes thr									
		continuouslyAr	ny othe	er valu	ue is no	ot acce	eptabl	е			
			., 5011	7010			- 10 50 01	-			

Table 6 (continued)

Summary of Supported PMBus Commands (continued)

Hex Code	Command				Brief D	escrip	tion					Non-Volatile Memory Storage
		Sets the outpu	ıt over	currer	nt warning	level i	n A					3
		For	mat				Uns	igned E	inary			
		Bit Po	sition	7	7 6	5	4	3	2	1	0	
		Acc	ess	r	r	r	r	r	r	r	r	
4A	IOUT_OC_WARN	Fund	ction		Expone	nt			1	Mantis	sa	
44	_ LIMIT	Default				1	1	1	0	0	0	
		Bit Po				5	4	3	2	1	0	
		Acc		r	r/w	r/w	r/w		r/w	r/w	r/w	
		Fund		- 6		0	Mar	ntissa	1 -			
	Value may be locked	Default				0	ı	0	I	0	0	
		Sets the overte	empei	rature	fault level	in °C		•	_·			
			rmat					signed		-		
			osition		7 6	5	4	3	2		0	
			cess		r r	r	r	r	r	r Mant	r	
4F	OT_FAULT_LIMIT	Defau	ction	10	Expor	0	0	0	0	Mant 0	0	YES
			osition		7 6	5	4	3	2	1	0	
			cess		/w r/w	r/w	r/w		r/w	r/w	r/w	
			ction	- ''	1, 1, 1	17 VV	<u> </u>	itissa	1, **	1/ **	11/ **	
	Value may be locked	Defau		ie (0 1	1	1	1	1	0	1	
	value may be locked	Sets the over t	emne	rature	warning l	evel in	°C					
		Sets the over temperature warning level in °C Format Linear, two's complement binary										
		Bit Position	7	6	5	4		3	2	1	0	
		Access	r	r	r	r		r	r	r	r	
		Function	•	<u> </u>	Expone		ı	<u> </u>		∙ ∙Iantis:		
51	OT_WARN_LIMIT	Default Value	0	0	0	Ο		0	0	0	0	YES
		Bit Position	7	6	5	4		3	2	1	0	
		Access	r/w	r/w	r/w	r/v	V	r/w	r/w	r/w	r/w	
	Value may be locked	Function			•	Ма	antis	sa			•	
	·	Default Value	0	1	1	1		1	0	0	0	
		Sets the rise ti										
		0.6, 0.9, 1.2, 1.8,							unit to	bring i	ts	
		output to prog	gramn	ned va								
		Format		6	Linear, t						0	
		Bit Position	7	6	5	4		3	2	1	0	
61	TON_RISE	Access	r	r	r	r		r	r	1 +:-	r/w	YES
		Function	7	٦ .	Expone					Mantis:		
		Default Value	<u> </u>	6	5	0		3	0 2	0	0	
		Bit Position Access	r/w	r/w	r/w	r/v		r/w	r/w	r/w	r/w	
		Function	I/VV	I/VV	I/VV		antiss		1/00	1/ //	1/00	
		Default Value	0	1	1	1 0	-	0	0	0	0	
		Returns one b		inform	nation with					_		
		module faults	,			5611		,				
		Format			U <u>n</u>	signed	Bin	ary				
		Bit Position	7	6	5	4		3	2	1	0	
78	STATUS_BYTE	Access	r	r	r	r		r	r	r	r	
											None	
		Flag	X	OFF	VOUT_O\	IOUT.	_OC	VIN_UV	TEMP	CML	of the	
											Above	
		Default Value	0	0	0	0		0	0	0	0	

Table 6 (continued)

Summary of Supported PMBus Commands (continued)

Hex Code	Command		Non-Volatile Memory Storage								
		Returns two bytes fault/warning cond	of inforr ditions	mation \	vith a	summa	ry of the	e modul	e's		
		Format	o., e. o., io		Unsi	gned B	inarv				
		Bit Position	7	6	5	4	3	2	1		
		Access	r	r	r	r	r	r	r		
79	STATUS_WORD	Flag	VOUT	IOUT/P OUT	X	MFR	PGOO D	X	X		
/ 9	STATOS_WORD	Default Value	0	0	0	0	0	0	0		
		Bit Position	7	6	5	4	3	2	1		
		Access	r	r	r	r	r	r	r		
		Flag	X	OFF	VOUT _OV	IOUT_ OC	VIN_U V	TEMP	CML		
		Default Value	0	X	0	0	0	0	0		
		Returns one byte c	eturns one byte of information with the status of the module's								
		output voltage rela	itput voltage related faults								
		Format			Unsig	ned Bi	nary				
7A	STATUS_VOUT	Bit Position	7	6	5 5	4	3	2	1 0		
			Access r r r r r r r r								
		Flag	VOUT_			VOUT_	UV X		X X 0 0		
		Returns one byte of information with the status of the module's output current related faults									
		Format			Unsid	ned Bir	narv				
7B	STATUS_IOUT	Bit Position	7		6	5		3 2	1 0		
		Access	r		r	r		r r	r r		
		Flag	IOUT.			OUT OC	X	x x	x x		
		Default Value	Fau O		0	/arning 0		0 0	0 0		
		Returns one byte o									
		temperature relate		ation w	ui uie	Status (or tille it	ioddie 3			
		Format			Unsia	ned Bin	arv				
7D	STATUS_TEMPERAT	Bit Position	7	6	Onlong	5 4	_	2 1	0		
, ,	URE	Access	r	r		r r	_	r r	_		
		Flag C	T_FAUL	TOT_W	ARN	Х х	Х	XX	(x		
		Default Value	0	0		0 0	0	0 0) 0		
		Returns one byte c	of inform	ation w	th the	status (of the m	odule's			
		communication re									
		Format			Jnsigr	ned Bin	ary				
		Bit Position	7	6	5	4		2 1	0		
7E	STATUS_CML	Access	r	r	r	r	r	r r	r		
		Π	Invalid	Invalid	J PEC	Memo		Oth			
		l I Flad I	ommand	_		ı raui		χ Com			
						detec.		Fau			
		Default Value	0	0	0	0	0	0 0	0		

Table 6 (continued)

Hex Code	Command			Br	ief De	scriptio	n				
		Returns one byte faults or warning	of info	rmati	on wit	h the st	atus c	of the	mo	dule sp	pecific
		Format				Unsign	ad Rij	a rv			
		Bit Position	7	6	5	4	3	2	1		0
		Access	r	r	r	 r	r	r	r		2
80	STATUS_MFR_SPECIFIC	Flag	OTFI	X		VADDR		X	X		PH_EN
		Default Value	0	0	0	0	0	0	0)
		OTFI – Internal Te						L - L			
		IVADDR – PMBUs					Jilat	aovv	11 (111	CSHOIC	'
		TWOPH_EN - Mo									
		Returns the value	of the	outp	ut volt	age of t	he mo	odule	e. Ex	ponen	t is
		fixed at -9.				J					
		Format	Format Linear, two's complement binary								
		Bit Position	7	6	5	4	3		2	1	0
		Access	r	r	r	r	r		r	r	r
8B	READ_VOUT	Function				Mai	ntissa				
		Default Value	0	0	0	0	0		0	0	0
		Bit Position	7	6	5	4	3		2	1	0
		Access	r	r	r	r	r		r	r	r
		Function				Mai	ntissa				
		Default Value	0	0	0	0	0		0	0	0
		Format		Lir	near, t	wo's co	mple	men	t bin		
		Bit Position	7	6	5	4	3 R		2	1	0
		Access Function	r	r	r Expon	r	l R		r	r 1antiss	r
8C	READ_IOUT	Default Value	1	1	1	0	0		V	V	V
6C	READ_IOUT	Bit Position	7	6	5	4	3		2	1	0
		Access	r	r	r	r	r		r	r	r
		Function		1			ntissa	ı	-	l	' '
		Default Value	V	V	V	V	V		V	V	0
		V - Variable									
		v - Variable Returns the value	of the	exter	nal ter	mperati	ure in	degr	ee C	elsius	
		Returns the value	of the	exter							nary
		Returns the value	of the	exter 6		mperatu .inear, t	wo's	om	olem		nary O
		Returns the value Format Bit Position				inear, t	wo's (om			
		Format Bit Position Access	7	6 r	5	inear, t 4 r	wo's	om	olem 2 r	ent bi	O r
8E	READ_TEMPERATURE_2	Returns the value Format Bit Position	7	6 r	5 r	inear, t 4 r	wo's (comp	olem 2 r	ent bi	O r
8E	READ_TEMPERATURE_2	Format Bit Position Access Function	7 r	6 r	5 r Expone	inear, t 4 r ent	wo's (comp	plem 2 r M	ent bi 1 r antissa	O r
8E	READ_TEMPERATURE_2	Format Bit Position Access Function Default Value	7 r	6 r E	5 r Expone	inear, t 4 r ent 0	wo's (3 R 0	omp	plem 2 r M	r antissa	O r
8E	READ_TEMPERATURE_2	Format Bit Position Access Function Default Value Bit Position Access Function	7 r 0 7 r	6 r 0 6	5 r expone	inear, t	3 R O 3	omp	plem 2 r M V	ent bi 1 r antissa V	0 r a V 0
8E	READ_TEMPERATURE_2	Format Bit Position Access Function Default Value Bit Position Access	7 r 0 7	6 r 0 6	5 r expone	inear, t	wo's (3 R R) 0 3 r	comp	plem 2 r M V	ent bi 1 r antissa V	0 r a V 0

Table 6 (continued)

Hex Code	Command	Brief Description									Non-Volatile Memory Storage
		Returns one byte i (read only)	ndicat	ting the	e modi	ıle is co	mpliar	nt to PN	MBus S	pec. 1.1	
		Format				U	nsigne	d Bina	rv		
98	PMBUS_REVISION	Bit Position	7	6	5	4	3	2	1	0	
		Access	r	r	r	r	r	r	r	r	
		Default Value	0	0	0	1	0	0	0	1	
		Returns module n	ame ir	nforma	tion						
		Format									
		Bit Position	7	6	5	4	gned Bi	2	1	0	
		Access	r	r	r	r	R	r	r	r	
DO	MFR_SPECIFIC_00	Function	•	•		Rese	rved				YES
	1411 TC_51 ECH TC_00	Default Value	0	0	0	0	0	V	V	V	123
		Bit Position	7	6	5	4	3	2	1	0	
		Access	r	r	r	r	r	r	r	r	
		Function		1odule	Name	9		Rese	rved		
		Default Value	0	0	1	1	1	1	1	0	
D4	VREF_TRIM	+10% in 2mV steps +60mV. The offset (dec) Format Bit Position Access Function Default Value Bit Position Access Function Default Value	7 r/w V 7 r	Lind 6 r	ear, two	o's con 4 r Mar v 4 r/w Mar v	mplemonth of the state of the s	ent bir 2 r v 2 r/w	nt fixed	0 r v 0 r/w v	YES
D5	STEP_VREF_MARGIN_ HIGH	Applies a fixed offs in 2mV steps. Perroffset is calculated Exponent fixed at adjustment and research Format Bit Position Access Function Default Value Bit Position Access Function Default Value Default Value	missibl I as (ST -9(dec	e value TEP_VF). Net c from -3	es rang REF_MA output 80% to	e betw ARGIN_voltage 10% 70's col 4 r Mar v 4 r/w	een 0m HIGH +	nV and VREF les VRE	+60m' _TRIM); EF_TRII	V. The x2 ⁻⁹ .	YES

Table 6 (continued)

Applies a fixed negative offset to the reference voltage. Adjustment is - 20% to 0% in 2mV steps. Permissible values range between -120mV and 0mV) The offset is calculated as (STEP_VREF_MARGIN_LOW + VREF_TRIM) x2°.Exponent fixed at -9(dec). Net output voltage includes VREF_TRIM adjustment and ranges from -30% to 10% STEP_VREF_MARGIN	Hex Code	Command			Brie	ef Des	criptio	n				Non-Volatile Memory Storage
Bit Position 7 6 5 4 3 2 1 0			20% to 0% in 2mV 0mV) The offset is x2 ⁻⁹ .Exponent fixe	steps. I calcula d at -9(d	Permiss Ited as Idec). N	sible va (STEP ₋ et outp	alues r _VREF. out vol	ange b _MARC	etwee	en -120n)W + VF	nV and REF_TRIM)	
Access			Format		Line	ar, tw	o's co	mplen	nent b	inary		
December Color C	DC	STEP_VREF_MARGIN	Bit Position	7	6	5	4	3	2	1	0	\/FC
Default Value	D6		Access	r	r	r	r	r	r	r	r	YES
Bit Position 7 6 5 4 3 2 1 0 Access r r r/w r/w r/w r/w r/w r/w r/w Function							Mar	ntissa				
Access r r r/w										_	V	
Function				7	6		-			•		
Default Value				r	r	r/w			r/w	r/w	r/w	
Single command to set PGOOD, VOUT_UNDER_VOLTAGE(UV) and VOUT_OVER_VOLTAGE(OV) limits as percentage of nominal				1		ı			1	1		
PCT_VOUT_FAULT_PG			1	-	-	-	-	-		-	•	
PCT_VOUT_FAULT_PG											nd	
Bit Position 7 6 5 4 3 2 1 0 Access r r r r r r r r r			VOUT_OVER_VOL	TAGE(C)V) limi					nal		
D7												
PCT_VOUT_FAULT_PC												
D7 PCT_VOUT_FAULT_PG _LIMIT PCT_LSB UV (%) PGL PGL PGH PGH HIGH OV (%) (%) 0 0 -16.67 -12.5 -8.33 12.5 8.33 16.67 0 0 1 -12.5 -8.33 -4.17 8.33 4.17 12.5 1 0 -29.17 -20.83 -16.67 8.33 4.17 12.5 1 1 -41.67 -37.5 -33.33 8.33 4.17 12.5 Used to set delay to turn-on or turn-off modules as a ratio of TON_RISE. Values can range feom0 to 7 a multiple of TON_RISETIME Format Unsigned Binary Bit Position 7 6 5 4 3 2 1 0 Access r/W r/W r/W r r/W r/W			Access	r	r	r	r	r	r			
Default Value 0 X X X X X X X X X			Function	X	X	X	X	X	X			
D7 PAGE Command Truth Table PCT_ MSB PCT_LSB UV (%) PGL PGH HIGH OV (%) (%) (%) 0 0 1-16.67 -12.5 -8.33 12.5 8.33 16.67 0 1 -12.5 1 0 -29.17 -20.83 -16.67 8.33 4.17 12.5 1 1 1 -41.67 -37.5 -33.33 8.33 4.17 12.5 1 1 1 -41.67 -37.5 -33.33 8.33 4.17 12.5 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 -41.67 1 -37.5 1 -33.33 8.33 4.17 12.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Dofault Value	0	V	V	V	Y	Y		1	
PCT_ PCT_LSB UV (%) PGL PGH PGH HIGH OV (%)	D7		'		^	^	^	^	^			
D8 PCT_LSB UV (%) PGL PGH HIGH OV (%)	<i>D</i> ,	_LIMIT	PAGE Command Trut	h Table								
D8 O			PCT_ MSB PCT_L	SB UV	(%) LO	PGL W (%)	PGL HIGH (. P (%) LO	GH W (%)	HIGH	OV (%)	
1											16.67	
1			0 1	-12	2.5 -	8.33	-4.17					
Used to set delay to turn-on or turn-off modules as a ratio of TON_RISE. Values can range feom0 to 7 a multiple of TON_RISETIME Format Unsigned Binary Bit Position 7 6 5 4 3 2 1 0 Access r/W r/W r/w r r/w r/W r/W r/W r Function TON_DELAY TON_DELAY			1 0	-29			-16.6	7 8.33	3 4	4.17		
Values can range feom0 to 7 a multiple of TON_RISETIME Format Bit Position 7 6 5 4 3 2 1 0 Access r/W r/W r/W r r r/W r/W r/W r Function TON_DELAY TON_DELAY			1 1	-41.	.67	37.5	-33.3	3 8.33	3 4	4.17	12.5	
D8 SEQUENCE_TON_TOFF											I_RISE.	
DBDELAY		CEOUENCE TON TOES	Format			U	Jnsign	ed Bin	ary			
Function TON_DELAY TON_DELAY	D8	_	Bit Position				4	_			_	
		_DELAY					r				V r	
Default Value 0 0 1 1 1 0 0							TON_DELAY					
			Default Value	0	0	1	1	1		1 0	0	

Table 6 (continued)

Digital Power Insight (DPI)

OmniOn offers a software tool that set helps users evaluate and simulate the PMBus performance of the PJT007 modules without the need to write software.

The software can be downloaded for free at omnionpower.com

A OmniOn USB to I2C adapter and associated cable set are required for proper functioning of the software suite. For first time users, the OmniOn DPI Evaluation Kit can be purchased from leading distributors at a nominal price and can be used across the entire range of OmniOn Digital POL Module.

Thermal Considerations

Power modules operate in a variety of thermal environments; however, sufficient cooling should always be provided to help ensure reliable operation.

Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel. The test set-up is shown in Figure 48. The preferred airflow direction for the module is in Figure 49.

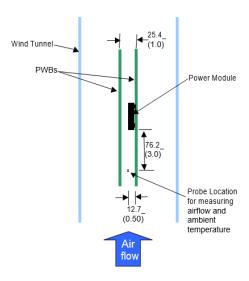


Figure 48. Thermal Test Setup.

The thermal reference points, Tref used in the specifications are also shown in Figure 49. For reliable operation the temperatures at these points should not exceed 120°C. The output power of the module should not exceed the rated power of the module (Vo,set x lo,max).

Please refer to the Application Note "Thermal Characterization Process For Open-Frame Board Mounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures.

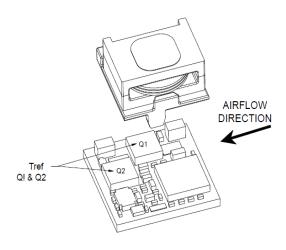


Figure 49. Preferred airflow direction and location of hot-spot of the module (T_{ref}).

PJT007_DS

Shock and Vibration

The ruggedized (-D version) of the modules are designed to withstand elevated levels of shock and vibration to be able to operate in harsh environments. The ruggedized modules have been successfully tested to the following conditions:

Non operating random vibration:

Random vibration tests conducted at 25°C, 10 to 2000Hz, for 30 minutes each level, starting from 30Grms (Z axis) and up to 50Grms (Z axis). The units were then subjected to two more tests of 50Grms at 30 minutes each for a total of 90 minutes.

Operating shock to 40G per Mil Std. 810G, Method 516.4 Procedure:

The modules were tested in opposing directions along each of three orthogonal axes, with waveform and amplitude of the shock impulse characteristics as follows:

All shocks were half sine pulses, 11 milliseconds (ms) in duration in all 3 axes.

Units were tested to the Functional Shock Test of MIL-STD-810, Method 516.4, Procedure I - Figure 516.4-4. A shock magnitude of 40G was utilized. The operational units were subjected to three shocks in each direction along three axes for a total of eighteen shocks.

Operating vibration per Mil Std 810G, Method 514.5 Procedure I:

The ruggedized (-D version) modules are designed and tested to vibration levels as outlined in MIL-STD-810G, Method 514.5, and Procedure 1, using the Power Spectral Density (PSD) profiles as shown in Table 7 and Table 8 for all axes. Full compliance with performance specifications was required during the performance test. No damage was allowed to the module and full compliance to performance specifications was required when the endurance environment was removed. The module was tested per MIL-STD-810, Method 514.5, Procedure I, for functional (performance) and endurance random vibration using the performance and endurance levels shown in Table 7 and Table 8 for all axes. The performance test has been split, with one half accomplished before the endurance test and one half after the endurance test (in each axis). The duration of the performance test was at least 16 minutes total per axis and at least 120 minutes total per axis for the endurance test. The endurance test period was 2 hours minimum per axis.

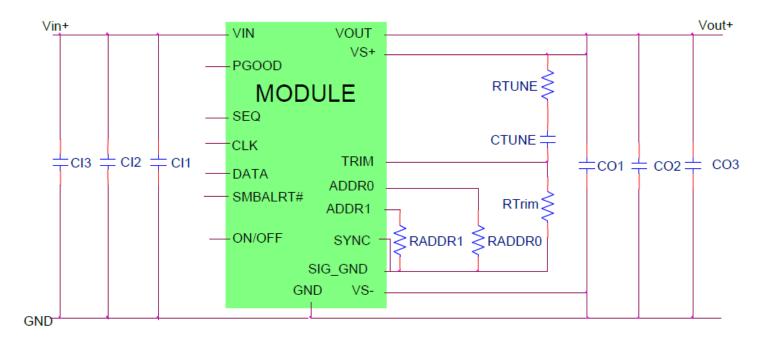
Frequency (Hz)	PSD Level (G2/Hz)	Frequency (Hz)	PSD Level (G2/Hz)	Frequency (Hz)	PSD Level (G2/Hz)
10	1.14E-03	170	2.54E-03	690	1.03E-03
30	5.96E-03	230	3.70E-03	800	7.29E-03
40	9.53E-04	290	7.99E-04	890	1.00E-03
50	2.08E-03	340	1.12E-02	1070	2.67E-03
90	2.08E-03	370	1.12E-02	1240	1.08E-03
110	7.05E-04	430	8.84E-04	1550	2.54E-03
130	5.00E-03	490	1.54E-03	1780	2.88E-03
140	8.20E-04	560	5.62E-04	2000	5.62E-04

Table 7: Performance Vibration Qualification - All Axes

Frequency (Hz)	PSD Level (G2/Hz)	Frequency (Hz)	PSD Level (G2/Hz)	Frequency (Hz)	PSD Level (G2/Hz)
10	0.00803	170	0.01795	690	0.00727
30	0.04216	230	0.02616	800	0.05155
40	0.00674	290	0.00565	890	0.00709
50	0.01468	340	0.07901	1070	0.01887
90	0.01468	370	0.07901	1240	0.00764
110	0.00498	430	0.00625	1550	0.01795
130	0.03536	490	0.01086	1780	0.02035
140	0.0058	560	0.00398	2000	0.00398

Table 8: Endurance Vibration Qualification - All Axes

Example Application Circuit


Requirements:

 V_{in} : 12V V_{out} : 1.8V

I_{out}: 5.25A max., worst case load transient is from 3.5A to 5.25A

 ΔV_{out} : 1.5% of Vout (27mV) for worst case load transient

V_{in}, ripple 1.5% of V_{in} (180mV, p-p)

CII Decoupling cap - 1x0.047µF/16V ceramic(e.g. Murata LLL185R71C473MA01) + 1x0.1uF/16V 0402 ceramic

CI2 3x22µF/16V ceramic capacitor (e.g. Murata GRM32ER61C226KE20)

CI3 47µF/16V bulk electrolytic

CO1 Decoupling cap - 1x0.047µF/16V ceramic (e.g. Murata LLL185R71C473MA01) + 1x0.1uF/16V 0402 ceramic CO2

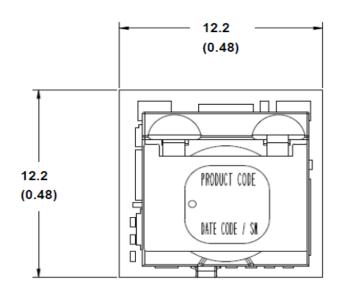
5 x 47uF/6.3V 1210 ceramic capacitors

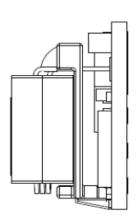
CO3 NA

C_{Tune} 3300 pF ceramic capacitor (can be 1206, 0805 or 0603 size)

 R_{Tune} 300 Ω SMT resistor (can be 1206, 0805 or 0603 size)

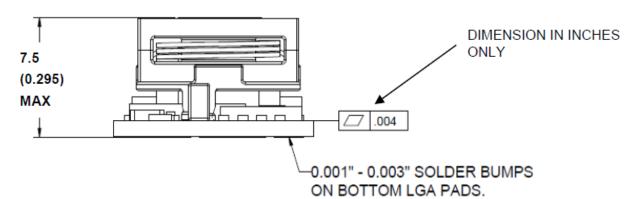
 R_{Trim} 10k Ω SMT resistor (can be 1206, 0805 or 0603 size, recommended tolerance of 0.1%)

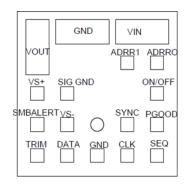

Note: The DATA, CLK and SMBALRT pins do not have any pull-up resistors inside the module. Typically, the SMBus master controller will have the pull-up resistors as well as provide the driving source for these signals.



Mechanical Outline

Dimensions are in millimeters and (inches).

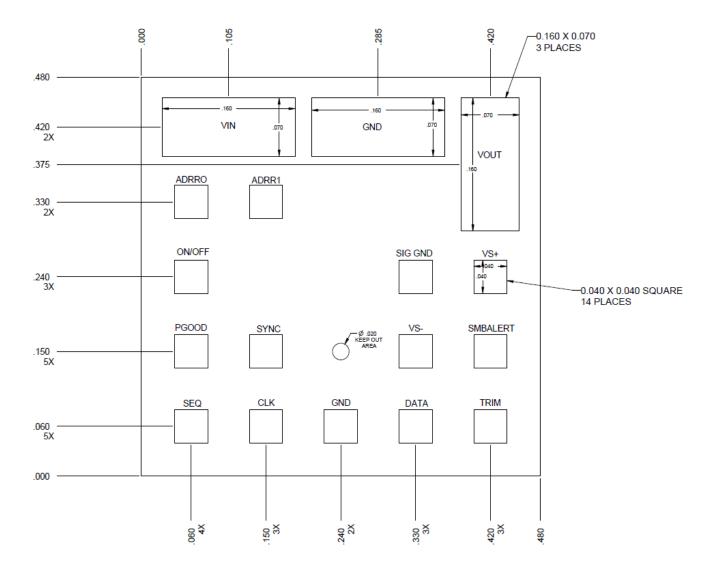

Tolerances: x.x mm ± 0.5 mm (x.xx in. ± 0.02 in.) [unless otherwise indicated] x.xx mm ± 0.25 mm (x.xxx in ± 0.010 in.)



TOP VIEW

SIDE VIEW

PIN	FUNCTION	PIN	FUNCTION
1	ON/OFF	10	PGOOD
2	VIN	11	SYNC 1
3	GND	12	VS-
4	VOUT	13	SIG_GND
5	VS+ (SENSE)	14	SMBALERT#
6	TRIM	15	DATA
7	GND	16	ADDR0
8	CLK	17	ADDR1
9	SEQ		

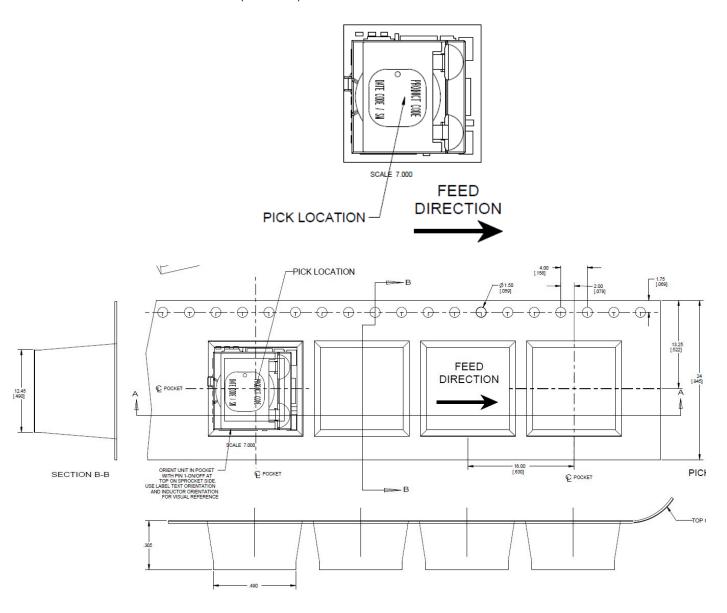

¹ If unused, connect to SIG_GND

Recommended Pad Layout

Dimensions are in millimeters and (inches).

Tolerances: x.x mm ± 0.5 mm (x.xx in. ± 0.02 in.) [unless otherwise indicated] x.xx mm ± 0.25 mm (x.xxx in ± 0.010 in.)

PIN	FUNCTION	PIN	FUNCTION
1	ON/OFF	10	PGOOD
2	VIN	11	SYNC ²
3	GND	12	VS-
4	VOUT	13	SIG_GND
5	VS+ (SENSE)	14	SMBALERT#
6	TRIM	15	DATA
7	GND	16	ADDR0
8	CLK	17	ADDRI
9	SEQ		


²If unused, connect to SIG_GND.

Packaging Details

The 12V Digital PicoDLynxII™ 7A modules are supplied in tape & reel as standard. Modules are shipped in quantities of 200 modules per reel.

All Dimensions are in millimeters and (in inches).

Reel Dimensions:

Outside Dimensions: 330.2 mm (13.00) Inside Dimensions: 177.8 mm (7.00") Tape Width: 24.00 mm (0.945")

Surface Mount Information

Pick and Place

The 7A Digital PicoDLynxII™ modules use an open frame construction and are designed for a fully automated assembly process. The modules are fitted with a label designed to provide a large surface area for pick and place operations. The label meets all the requirements for surface mount processing, as well as safety standards, and is able to withstand reflow temperatures of up to 300°C. The label also carries product information such as product code, serial number and the location of manufacture.

Nozzle Recommendations

The module weight has been kept to a minimum by using open frame construction. Variables such as nozzle size, tip style, vacuum pressure and placement speed should be considered to optimize this process. The minimum recommended inside nozzle diameter for reliable operation is 3mm. The maximum nozzle outer diameter, which will safely fit within the allowable component spacing, is 7 mm.

Bottom Side / First Side Assembly

Only the -D version of this module can be placed at the bottom side of the customer board. No additional glue or adhesive is required to hold the module during the top side reflow process. Serial numbers with date codes starting from 19xx21xxxxxx (19 – year, 21 – week) are suitable for bottom side placement.

Lead Free Soldering

The modules are lead-free (Pb-free) and RoHS compliant and fully compatible in a Pb-free soldering process. Failure to observe the instructions below may result in the failure of or cause damage to the modules and can adversely affect long-term reliability.

Pb-free Reflow Profile

The Power Systems will comply with J-STD-020 Rev. C (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) for both Pb-free solder profiles and MSL classification procedures. This standard provides a recommended forced-air-convection reflow profile based on the volume and thickness of the package (table 4-2). The suggested Pb-free solder paste is Sn/Ag/Cu (SAC). For questions regarding Land grid array(LGA) soldering, solder volume; please contact OmniOn for special manufacturing process instructions. The recommended linear reflow profile using Sn/Ag/Cu solder is shown in Fig. 44. Soldering outside of the recommended profile requires testing to verify results and performance.

MSL Rating

The 7A Digital PicoDLynxIITM modules have a MSL rating of 2A.

Storage and Handling

The 7A The recommended storage environment and handling procedures for moisture-sensitive surface mount packages is detailed in J-STD-033 Rev. A (Handling, Packing, Shipping and Use of Moisture/ Reflow Sensitive Surface Mount Devices). Moisture barrier bags (MBB) with desiccant are required for MSL ratings of 2 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of \leq 30°C and 60% relative humidity varies according to the MSL rating (see J-STD-033A). The shelf life for dry packed SMT packages will be a minimum of 12 months from the bag seal date, when stored at the following conditions: < 40° C, < 90% relative humidity.

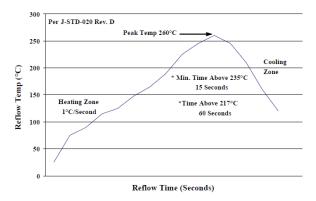


Figure 50. Recommended linear reflow profile using Sn/Ag/Cu solder.

Post Solder Cleaning and Drying Considerations

Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to Board Mounted Power Modules: Soldering and Cleaning Application Note (AN04-001).

Ordering Information

Please contact your OmniOn Sales Representative for pricing, availability and optional features.

Device Code	Input Voltage Range	Output Voltage	Output Current	On/Off Logic	Sequencing	Ordering Codes
PJT007A0X3-SRZ	4.5 – 14.4Vdc	0.51 – 5.5Vdc	7A	Negative	Yes	150051525
PJT007A0X43-SRZ	4.5 – 14.4Vdc	0.51 – 5.5Vdc	7A	Positive	Yes	150051526
PJT007A0X3-SRDZ	4.5 – 14.4Vdc	0.51 – 5.5Vdc	7A	Negative	Yes	150052349
PJT007A0X43-SRDZ	4.5 – 14.4Vdc	0.51 – 5.5Vdc	7A	Positive	Yes	150052968

⁻Z refers to RoHS compliant parts

Table 9. Device Codes

	Package Identifier	Family	Sequencing Option	Output current	•	On/Offlogic	Remote Sense	Opt	tions	ROHS Compliance
Ī	Р	J	Т	007A0	X		3	-SR	-D	Z
	P=Pico U=Pico M=Mega G=Giga	J=DLynx II Sequence K = DLynxII Analog.	T=with EZ Sequence X=without sequencing	7A	X = programmable output	4 = positive No entry = negative	3 = Remote Sense	S = Surface Mount R = Tape & Reel	D = 105°C operating ambient, 40G operating shock as per MIL Std 810G	Z = ROHS

Table 10 . Coding Scheme

OmniOn Power Electronics Inc.'s digital non-isolated DC-DC products may be covered by one or more of the following patents licensed from Bel Power Solutions, Inc.: US20040246754, US2004090219A1, US2004093533A1, US2004123164A1, US2004123167A1, US2004178780A1, US2004179382A1, US20050200344, US20050223252, US2005289373A1, US20060061214, US2006015616A1, US20060174145, US20070226526, US20070234095, US20070240000, US20080052551, US20080072080, US20080186006, US6741099, US6788036, US6936999, US6949916, US7000125, US7049798, US7068021, US7080265, US7249267, US7266709, US7315156, US7372682, US7373527, US7394445, US7456617, US7459892, US7493504, US7526660.

Outside the US Bel Power Solutions, Inc. licensed technology is protected by patents: AU3287379AA, AU3287437AA, AU3290643AA, AU3291357AA, CN10371856C, CN1045261OC, CN10458656C, CN10459360C, CN10465848C, CN11069332A, CN11124619A, CN11346682A, CN1685299A, CN1685459A, CN1685582A, CN1685582A, CN1685583A, CN1698023A, CN1802619A, EP1561156A1, EP1561268A2, EP1576710A1, EP1576711A1, EP1604254A4, EP1604264A4, EP1714369A2, EP1745536A4, EP1769382A4, EP1899789A2, EP1984801A2, W004044718A1, W004045042A3, W004045042C1, W004062061 A1, W004062062A1, W004070780A3, W004084390A3, W004084391A3, W005079227A3, W005081771A3, W006019569A3, W02007001584A3, W02007094935A3.

Contact Us

For more information, call us at

- +1-877-546-3243 (US)
- +1-972-244-9288 (Int'l)

Change History (excludes grammar & clarifications)

Revision	Date	Description of the change			
1.13	3/11/2022	Updated as per template , ROHS version			
1.14	06/24/2022	Updated typos in external cap values			
1.15	12/05/2023	Updated as per OmniOn template			

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein.

Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power. This document does not convey license to any patent or any intellectual property right. Copyright© 2023 OmniOn Power Inc. All rights reserved.