

DATASHEET

CAR1212FP series

Input: 85V_{ac} to 264V_{ac}; Output: 12V_{dc} @ 1250W; 5 V_{dc} @ 0.5A

Description

The CAR1212FP series of rectifiers provide highly efficient isolated power from world-wide commercial AC mains. Offered in the industry standard compact 1U form factor, these rectifiers complement the CAR1212DC converter line, providing comprehensive solutions for systems connected either to commercial ac mains or 48/60V_{dc} power plants. This plug and play approach, between AC and DC input units, has significant advantages since systems can be readily reconfigured by simply replacing the power supply.

The high-density, front-to-back airflow is designed for minimal space utilization and is highly expandable for future growth.

Features

- Universal input with PFC
- Constant power characteristic
- 3 front panel LEDs:
- Remote ON/OFF control of the 12V_{dc} output
- Remote sense on the 12V_{dc} output
- No minimum load requirements
- Active load sharing (single wire)
- Hot Plug-ability
- Efficiency: typically 89% at high line 85% at low line
- Standby: 5V_{dc}

- Auto recoverable OC & OT protection
- Operating temperature: -10 70°C (de-rated above 50°C)
- Digital status & control: I²C serial bus
- UL and cUL approved to UL/CSA[†]62368-1, TUV (EN62368-1), CE[§] Mark
- EMI: class A FCC docket 20780 part 15, EN55032
- Meets EN6100 immunity and transient standards
- Shock & vibration: NEBS GR-63-CORE, level 3
- Compliant to RoHS Directive 2011/65/EU and amended Directive (EU) 2015/863
- Compliant to REACH Directive (EC) No 1907/2006

Applications

- 12V_{dc} distributed power architectures
- Datacom and Telecom applications
- Mid to high-end Servers
- Enterprise Networking
- Network Attached Storage

- Telecom Access Nodes
- Routers/Switches
- Broadband Switches
- ATE Equipment

Technical Specifications

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage: Continuous		V _{IN}	0	264	V_{dc}
Operating Ambient Temperature		T _A	-10	70¹	°C
Storage Temperature	All	T _{stg}	-40	85	°C
I/O Isolation voltage to Frame (100% factory Hi-Pot tested)				1500	V_{dc}

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.

INPUT

Parameter		Device	Symbol	Min	Тур	Max	Unit
Operational Range			V_{IN}	85	110/230	264	V _{ac}
Frequency Range recommendation)	(ETSI 300-132-1		F _{IN}	47	50/60	63	Hz
Main Output Turn_OFF		V_{IN}			80	V _{ac}	
Maximum Input Currer (Vo= Vo, set, Io=Io, max)	nt V_{IN} = 100 V_{ac} V_{IN} = 180 V_{ac}		I _{IN}			12 8.1	A _{ac}
Cold Start Inrush Curre (Excluding x-caps, 25°C		I _{IN}			35	A_{peak}	
Efficiency (T _{amb} =25°C, V _{in} = 230V, \	All	η		89 85		%	
Power Factor	(V _{in} =230V _{ac} , I _O =I _{O, max})]	PF		0.99		
Holdup time²	V _{in} = 220V _{ac} , 1250W	1	Т		16.7		ms
(V _{out} = 12V _{dc} , T _{amb} 25°C)	V _{in} = 100Vac, 1000W		ı		20		ms
Ride through					10		ms
Leakage Current	(V _{in} = 250V _{ac} , F _{in} = 60Hz)		I _{IZ}		3		mArms
Isolation	Input/Output			3000			V _{ac}
	Input/Frame			1500			V _{ac}
	Output/Frame			50			V _{dc}

CAR1212FP_DS

© 2023 OmniOn Power Inc. All rights reserved.

¹ Derated above 50°C at 2.5%/°C

² 12V output can decay down to 10.8V

Electrical Specifications (continued)

12V_{dc} MAIN OUTPUT

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Power V _{in} ≥ 180V _{ac}			-	-	1250	
V _{in} ≥ 175V _{ac}		W			1000	W
V _{in} ≥ 90V _{ac}			-	-	900	
Set point]		11.9	12.00	12.1	V _{dc}
Overall regulation (load, temperature, aging)		V_{out}	-3		+3	%
Ripple and noise ³		V out			120	mV_{p-p}
Turn-ON overshoot					+3	%
Turn-ON delay		Т			2	sec
Remote ON/OFF delay time					20	ms
Turn-ON rise time (10 – 90% of V _{out})					50	ms
Transient response 50% step [10%-60%,	All		-5		+5	%V _{out}
50% - 100%] (di/dt – 1A/µs, recovery 300µs)						70 V Out
Programmable range (hardware & software)			11.4		12.6	V_{dc}
Overvoltage protection, latched		V_{Out}				
(recovery by cycling OFF/ON via hardware or software)			14.5	15	15.5	V_{dc}
Output current V _{in} = HL					104	
V _{in} = LL			0		83.5	A_{dc}
Current limit, Hiccup (programmable level)		l _{out}	110		145	% of FL
HL/LL			_			
Active current share			-5		+5	% of FL

 $^{^{\}rm 3}$ Measured across a 10µf electrolytic and a 0.1µf ceramic capacitors in parallel. 20MHz bandwidth

AUXILIARY OUTPUT

Parameter	Device	Symbol	Min	Тур	Max	Unit
Set point	All	V_{out}		5.0		V_{dc}
Overall regulation (load, temperature, aging)	All	V_{out}	-5		+5	%
Ripple and noise	All				50	mV_{p-p}
Output current	All	l _{out}	0		0.5	A _{dc}
Isolation Output/Frame	All		50			V_{dc}

Environmental, Reliability

Environment	аі, кенарініў					
Parameter		Min	Тур	Max	Units	Notes
Ambient Tem	nperature					
	Operating	-10		50	°C	Air inlet from sea level to 5,000 feet.
	Altitude Operating			1524/5k	m/ft	
	Power Derating			2.5	%/°C	51°C to 70°C
				2.0	C/1000 ft	Above 5,000 ft
	Storage	-40		85	°C	
Altitude non-operating				8200/30k	m/ft	
Acoustic noise				45	dbA	Full load, 25°C
Over Temper	ature Protection		110/95		°C	Shutdown / restart
Humidity	Operating	30		95	%	Deletive by recipitative new people recipe
	Storage	10		95	%	Relative humidity, non-condensing
Chack and Vil	bration acceleration			6	Grms	NEBS GR-63-CORE, Level 3, 20 -
SHOCK and VII	bration acceleration			O	UIIIS	2000Hz, min 30 minutes
						NEBS GR-63-CORE, all floors,
	Earthquake Rating	4			Zone	Seismic Zone 4 Designed andtested
						to meet NEBS specifications.
MTBF			320,000		hrs	Full load, 25°C per Bellcore RPP
IVITOI			320,000		1115	Full load, 50°C per Bellcore RPP

Electrical Specifications (continued)

ЕМС

Parameter	Criteria	Standard	Level	Test
AC input	Conducted emissions	EN55032, FCC Docket 20780 part 15, subpart J EN61000-3-2	A*	0.15 – 30MHz 0 – 2 KHz
	Radiated emissions	EN55032	A*	30 – 10000MHz
			А	-30%, 10ms
	Voltage dips	EN61000-4-11	С	-60%, 100ms
			С	-100%, 5sec
		ENG1000 / 5	А	4kV, 1.2/50µs, common mode
	Voltage surge	EN61000-4-5	А	2kV, 1.2/50µs, differential mode
immunity	Fast transients	EN61000-4-4	В	5/50ns, 2kV (common mode)
Enclosure immunity	Conducted RF fields	1 + N61000-4-6		130dBµV, 0.15-80MHz, 80% AM
	Radiated RF fields	EN61000-4-3	А	10V/m, 80-1000MHz, 80% AM
		ENV 50140	А	
	ESD	EN61000-4-2	В	4kV contact, 8kV air

^{*} Note: Contact the factory for a recommended external EMI filter to meet Class B emissions

Status and Control

Details of analog controls are provided in this data sheet under Signal Definitions. OmniOn Energy will provide separate application notes on the I²C protocol. Contact your local OmniOn Energy representative for details.

Signal Definitions

All signals and outputs are referenced to Output return. These include ' V_{stb} return' and 'Signal return'.

Input Signals

Voltage programming (V_{prog}):

An analog voltage on this signal can vary the output voltage \pm 5% from 11.4V_{dc} to 12.6V_{dc}. The equation of this signal is:

$$V_{out} = 11.4 + (V_{prog} * 0.3) 0 < V_{prog} < 4$$

If V_{prog} is > 4V or left open the programming signal is ignored and the unit output is set at the setpoint of $12V_{dc}$.

Load share (Ishare):

This is a single wire analog signal that is generated and acted upon automatically by power—supplies connected in parallel. The I_{share} pins should be tied together for power supplies if active current share among the power supplies is desired. No resistors or capacitors should get connected to this pin.

Remote ON/OFF:

Controls the presence of the main $12V_{\rm dc}$ output voltage. This is an open collector, TTL level control signal. This signal needs to be pulled HI externally through a resistor. Maximum collector voltage is $12V_{\rm dc}$ and the maximum sink current is 20mA. A Logic 1 (TTL HI level) turns ON the $12V_{\rm dc}$ output, while a Logic 0 (TTL LO level) turns OFF the $12V_{\rm dc}$ output. This signal is not overwritten by the firmware ON/OFF instruction. The default firmware setting is ON. An OFF command either through this signal or firmware would turn OFF the power supply.

The default state re-initializes if bias power is interrupted to the processor.

Enable

This is a short signal pin that controls the presence of the $12V_{dc}$ main output. This pin should be connected to 'output return' on the system side of the output connector. The purpose of this pin is to ensure that the

output turns ON after engagement of the power blades and turns OFF prior to disengagement of the power blades.

Write protect (WP)

This signal protects the contents of the EEPROM from accidental over writing. When left open the EEPROM is write protected. A LO (TTL compatible) permits writing to the EEPROM. This signal is pulled HI internally by the power supply. Used only for factory programming

Output signals

Output current monitor (Imon)

A voltage level of 0.05V / A proportional to the delivered output current is present on this pin. Accuracy $\pm 10\%$ of FL at loads > 25% of FL.

AC OK

A TTL compatible status signal representing whether the input voltage is within the anticipated range. This signal needs to be pulled HI externally through a resistor. Maximum sink current \leq 20mA and the max voltage is 12V_{dc}. Open collector (HI) on this signal indicates that the input voltage is applied within the specified input range.

DC OK

A TTL compatible status signal representing whether the output voltage is present. This signal needs to be pulled HI externally through a resistor. Maximum sink current \leq 20mA and the max voltage is $12V_{dc}$. Open collector (HI) on this signal indicates that the output voltage is present.

Over temp warning

A TTL compatible status signal representing whether an over temperature exists. This signal needs to be pulled HI externally through a resistor. Maximum sink current \leq 20mA and the max voltage is 12V_{dc}. Open collector (HI) on this signal indicates that temperatures are normal.

If an over temperature should occur, this signal would pull LO for approximately 10 seconds prior to shutting down the power supply. The unit would restart if internal temperatures recover within normal operational levels. At that time the signal reverts back to its open collector (HI) state.

Output signals (continued)

Fault

A TTL compatible status signal representing whether a Fault occurred. This signal needs to be pulled HI externally through a resistor. Maximum sink current \leq 4mA and the max voltage is $12V_{dc}$. Open collector (HI) on this signal indicates that no Fault is present.

This signal activates for OTP, OVP, OCP, AC fault or No output.

PS Present

This pin is connected to 'output return' within the power supply. Its intent is to indicate to the system that a power supply is present. This signal may need to be pulled HI externally through a resistor.

Interrupt (SMBAlert)

A TTL compatible status signal, representing the SMBusAlert# feature of the PMBus compatible i^2C protocol in the power supply. This signal needs to be pulled HI externally through a resistor. Maximum sink current \leq 4mA and the pull up resistor should be tied to $3.3V_{dc}$. Open collector (HI) on this signal indicates that no Interrupt has been triggered.

Serial Bus Communications

The I²C interface facilitates the monitoring and control of various operating parameters within the unit and transmits these on demand over an industry standard I²C Serial bus.

All signals are referenced to 'Signal Return'.

Device addressing

The microcontroller (MCU) and the EEPROM have the following addresses:

Device	Address	Address Bit Assignments (Most to Least Significant)							
MCU	0xBx	_	0	_	1	A2	Αl	ΑO	R/W
EEPROM	0xAx	1	0	1	0	A2	Al	AO	R/W

Address lines (A2, A1, A0)

These signal pins allow up to eight (8) modules to be addressed on a single I²C bus. The pins are pulled HI internal to the power supply. For a logic LO these pins should be connected to 'Output Return'

Serial Clock (SCL)

The clock pulses on this line are generated by the host that initiates communications across the I²C Serial bus. This signal is not pulled up internally. The end user should add pull up resistance to $5V_{dc}$ as necessary

to ensure that rise and fall time timing and the maximum sink current is in compliance to the I²C specifications.

Serial Data (SDA)

This line is a bi-directional data line. This signal is not pulled up internally . The end user should add pull up resistance to $5V_{dc}$ as necessary to ensure that rise and fall time timing and the maximum sink current is in compliance to the I^2C specifications.

Communications Protocol

The I²C protocol is described in detail by the I²C and PMBus Serial Communications Protocol for the CAR Family of Power Supplies application note.

The Y01A suffix module supports only the I²C command set.

I/O Expander option (PCF8574ATD-T)

The CAR1212FPx without extended i^2c communications (blank under the software option) has a single status/control byte I/O expander that is accessible via default address 0 x 7Eh (A2, A1, A0 are pilled HI). This byte takes the form;

7	6	5	4	3	2	1	0
n/s	n/s	Fault	ON/OFF	Temp_OK	n/s	DCOK	ACOK

n/s - not supported

Bits 0, 1, 3, and 5 are 'read_only' and are HI [1] during normal operation. The rectifier needs to be biased externally in order to 'read' its operational state without the presence of input power.

Bit 4 is a 'read/write' bit that can be used to verify the ON/OFF commanded state or change the commanded output of the rectifier. In order to turn the output OFF this bit needs to be pulled LO [0].

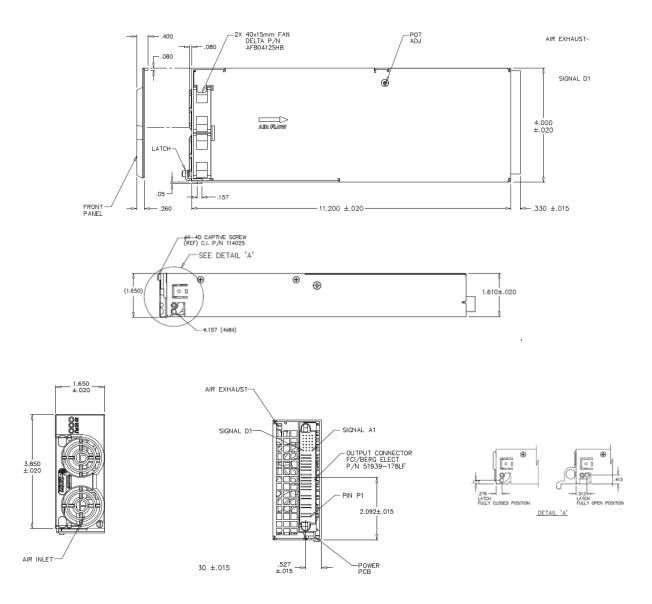
No PEC support is provided. Standard i^2c commands apply.

LEDs

Three LEDs are located on the front faceplate. The AC_OK LED provides visual indication of the INPUT signal function. When the LED is ON GREEN the power supply input is within normal design limits.

When the DC_OK LED is GREEN the DC output is present.

When the FAULT_LED is RED then a fault condition exists and the power supply may not provide output power. The table below further defines these states:



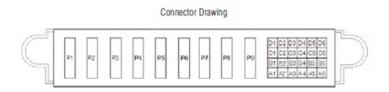
Alarm Table

	Test Condition	LI	ED Indicator		Monitoring Signals			
	rest Condition	AC OK	DC OK	FAULT	FAULT DC OK INPUT OK TE			TEMP OK
1	Normal Operation	Green	Green	OFF	High	High	High	High
2	Low or NO INPUT	OFF	OFF	Red	Low	Low	Low	High
3	OVP	Green	OFF	Red	Low	Low	High	High
4	Over Current	Green	OFF	Red	Low	Low	High	High
5	Over Temp Alarm	Green	Green	Red	Low	High	High	Low
6	Over Temp Fault	Green	OFF	Red	Low	Low	High	Low

Notes: Test condition #2 had 2 modules plug in. One module is running and the other one is with no AC.

Outline Drawing

Page 7 © 2023 OmniOn Power Inc. All rights reserved.



Connector Pin Assignments

Mating Connector: FCI/Berg P/N 51939-178

Mating connector: Primary Source: FCI berg P/N 51866-025 (right angle mounting)

or FCI berg P/N 51940-117 (straight mounting)

Pin	Function	Pin	Function	Pin	Function	Pin	Function
A1	V _{stb} [5V]	B1	Fault	C1	I _{Share}	DI	V_{Prog}
A2	V _{stb} [5V] Return	B2	l Monitor (IMON)	C2	No connect	D2	OVP Test Point
A3	Signal Return	ВЗ	Enable: "0" –ON "1" - OFF	C3	Over Temp Warning	D3	Remote ON/OFF
A4	Write Protect (WP)	B4	PS Present	C4	I ² C Address (A0)	D4	DC OK
A5	Remote Sense (+)	B5	SDA (I ² C bus)	C5	I ² C Address (A1)	D5	AC OK
A6	Remote Sense (-)	B6	SCL (I ² C bus)	C6	I ² C Address (A2)	D6	SMBAlert

P1	Line	P2	Neutral	P3	Chassis		
P4 – P6	Output Return					P7- P9	+12V _{out}

Ordering Information

Please contact your OmniOn Energy Sales Representative for pricing, availability and optional features.

PRODUCT	DESCRIPTION	PART NUMBER
1250W Rectifier	+12 V_{out} , 5 V_{aux} , with face plate, I ² C option, RoHS 6 of 6	CAR1212FPBCXZ01A

Contact Us

For more information, call us at

- +1-877-546-3243 (US)
- +1-972-244-9288 (Int'l)

Change History (excludes grammar & clarifications)

Revision	Date	Description of the change
4.3	12-22-2021	Updated as per template
4.4	03-07-2023	Deleted Obsolete Products
4.5	01-03-2024	Updated as per OmniOn template

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power. This document does not convey license to any patent or any intellectual property right. Copyright© 2023 OmniOn Power Inc. All rights reserved.