APPLICATION NOTE

Advanced Features of MLX/SLX Series Modules

Applicable to MLX160, MLX120, MLX080, MLX040, SLX 160 and SLX040

The MLX/SLX series of Digital DLynxIII[™] power module provide advanced features which can be used to configure modules for atypical applications and optimize performance in routine conditions. These modules use an advanced PID based adjustable digital control loop which ensures loop stability, provides fast transient response and reduces amount of required output capacitance. The module also provides control and adjustment of the availability of the internal power stages.

This document will provided instructions on how to achieve the following :

- Phase Addition / Shedding, Diode Emulation mode
- Security Setting
- Adaptive Transient Algorithm
- Loop Tuning

Some of the tools that are used to facilitate these features are

Digital Power Insight (DPI)

OmniOn offers a software tool that helps users evaluate and simulate the PMBus performance of the MLX series modules without the need to write software. The software can be downloaded for free at **<u>omnionpower.com</u>**.

An OmniOn USB to I2C adapter and associated cable set are required for proper functioning of the software suite. For first time users, we recommend using the OmniOn's DPI Evaluation Kit, which can be purchase from any of the leading distributors. Please ensure the OmniOn USB to I2C adapter being used/purchased is Version 2.2 or higher.

Power Module Wizard

OmniOn offers a free web based easy to use tool that helps users simulate the Tunable Loop performance of the DJT090A0X43-SRPZ. Go to **omnionpower.com** and sign up for a free account and use the module selector tool. The tool also offers Simplis models that can be used to assess transient performance, module stability, etc.

NOTE — For clarity OmniOn DPI GUI screenshots have been used to demonstrate the advanced features. Users can use their own I2C/PMBus tools to program the MLX modules to achieve the same results.

[#] The PMBus name and logo are registered trademarks of the System Management Interface Forum (SMIF)

1) Phase Addition / Shedding

Phase Addition / Shedding can be set through a combination of the Power Mode (0x34) and Dynamic Phase Control Commands available through the D0 command series

Format								16-b	it unsig	ned						
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/W	R/W	r R/W	, R/ W	R/ W	R/ W	R/ W	R/W	R/W	R/W
Max Efficiency (automaticall y enables Diode emulation when current drops below threshold)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Max Power – Max configured phases operate (Default)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Power Statel- Commands phases to drop to 1 or 2 phases	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Power State2 - Commands phases to drop to 1 phase diode emulation mode	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

POWER_MODE [0x34] : Sets power state of the Module as follows:

Apart from [0x34] there are other options in the [0xD0] register setting that allow for :

DPC—Dynamic Phase Control

Auto_PS—Automatic Power State Mode

DE—Diode Emulation Mode

1) Phase Addition / Shedding (continued)

POWER_MODE [0x34] : Setting options using OmniOn DPI software are as follows:

Monitor				
	Cmd	Value	Read	Write
VOUT_MODE	0x20	-8	Read	Write
VOUT_TRIM (V)	0x22	0.0	Read	Write
POWER_MODE	0x34	3	Read	Write
VOUT_MAX (V)	0x24	2.102	Read	Write
VOUT_MIN (V)	0x2B	0.25	Read	Write
VOUT_MARGIN_HIGH (V)	0x25	0.0	Read	Write
VOUT_MARGIN_LOW (V)	0x26	0.0	Read	Write

Power Mode Selection :

- 0 🔶 Max Efficiency
- 3 🔶 PSO Max Power
- 4 → PS1, 1 or 2 phase running
- 5 🏓 PS2, Diode Emulation

OmniOn DPI GUI screenshot shown above . Similar screenshots appear elsewhere in the document

1) Phase Addition / Shedding (continued)

Dynamic Phase Control (DPC): How does it work?

DPC sets the current thresholds at which different Power Phases/Stages are enabled/disabled. This allows the controller to run the module at higher efficiency levels even when the module is lightly loaded. For an 8 Phase module which corresponds to a MLX160 + SLX160 on a single output, the settings could be as shown below to achieve a good match of higher efficiency and spare available capacity as the loading changes.

In the table below the register setting value translates to Amps by multiplying the register value by a factor of 2. So 10 corresponds to a value of 20A and 15 corresponds to a value of 30A. The L**_P**_delta value is added to the previous threshold to arrive at the threshold for the next phase to be turned on.

Command	Register Setting	Action	Current Threshold
Loop1_Phase1_thresh	10	Phase 1 \rightarrow 2	20A
Loop1_Phase2_delta	15	Phase 2 → 3	50A
Loop1_Phase3_delta	15	Phase 3 → 4	80A
Loop1_Phase4_delta	15	Phase 4 → 5	110A
Loop1_Phase5_delta	15	Phase 5 → 6	140A
Loop1_Phase6_delta	15	Phase 6 → 7,8	170A

Phase Number

1a) PSO Max Power mode and Phase Addition/Shedding

Using an example of a 4-Phase Module(MLX160), the module can be set for all phases ON/no Phase Shedding operation as follows:

Since all the turn-on thresholds are 0A, all the phases will be ON regardless of load. Scope shot below shows the PWM signals as the load is increased. All Phases are enabled regardless of load current.

1a) PSO Max Power mode and Phase Addition/Shedding (continued)

Using MLX160 module in Max Power mode, the phase transitions can be set at 24A, 24+18, 24+18+18A as shown

Scope shot below shows the corresponding increase in PWM signal activity as the load crosses above setpoints

1a) PSO Max Power mode and Phase Addition/Shedding (continued)

Scope shot below the reduction in PWM signal activity as the load decreases past load shedding setpoints

1a) PSO Max Power mode and Phase Addition/Shedding (continued)

Efficiency improvement with Phase Addition and Shedding on MLX160 using the 24-18-18A thresholds for turning on and off phases. There is a noticeable improvement in efficiency in the <30% rating of the MLX160.

1b) PS1 1 Phase Power mode and Phase Addition / Shedding

Using an example of a 4-Phase Module(MLX160) + 2 –single phase (SLX040), the modules can be set to trigger from single phase operation to all 6 phases operating. These 2 parameters—1phase and 6 total phases are set using the GUI as shown below:

PWM signals below show that as the load (lout signal) is increased beyond 20A, all Phases are enabled.

Page 9

1b) PS1 - 2 Phase Power mode and Phase Addition/Shedding

Using an example of a 4-Phase Module(MLX160) + 2 –single phase (SLX040), the modules can be set to trigger from **dual** phase operation to all 6 phases operating. These 2 parameters— 2 phases and 6 total phases are set using the GUI as shown below:

Initially 2 phases active, PWM signals below show that as the load is increased beyond 20A, all Phases are enabled.

Page 10

The module provides different options for the Diode Emulation Mode. Depending on the application, the module can be set up from a simple skip mode under no load to setting inductor negative current threshold, pulse on time, etc.

First option is setting the Inductor current setting to operate the module in diode emulation mode

After setting Loop1_Inductor_ni_thresh= 16 which corresponds to 5A, Loop1_auto_PS_mode set to 1 and Power_mode set to 5 then when the total current is below 5A the power module will operate in PS2 diode emulation mode. When total module is over 5A, module will run in PS1/PS0 mode

Next options are to set Pulse On Time, Pulse OFF time or the Error Threshold turn-on

These setting options are explained through the GUI tool in the following few pages

Using an example of a 2 Phase Module (MLX080), the module can be set to operate in low duty cycle skip mode for no load conditions. Apart from the Power_Mode setting, 2 more sub settings are required as shown below:

- 1. Inductor current negative component threshold has to be set above 0
- 2. Automatic Power State Mode has to be disabled

Next choose an NI Threshold >0A from the many options.

	Cmd	Value	Read	Write	current threshold	
LOOP1_DIODE_EMU_X2	x0428	0	Read	Write	below which it is assumed that the	
LOOP1_DIODE_EMU_PW	×0428	7	Read	Write	inductor current	
LOOP1_DIODE_EMU_THRESH	×0428	1	Read	Write	has a negative component0 to	
LOOP1_DE_OFF_TIME_ADJ	×0428	4	Read	Write	15.75A@0.25A	
LOOP1_LE_TH	x042A	9	Read	Write		Note
LOOP1_AUTO_PS_MODE	×0432	0	Read	Write		'data': ' Inductor_ni_
LOOP1_INDUCTOR_NI_THRESH	×0440	1				thresh data' 'bit ': ' [5:0] '
LOOP2_PSI_OC_EN	×083E	0	Read	Write	Set NI_THRESH > 0 to enable	'0 ':' 0 A' '1 ':' 0.25 A'
LOOP2_PI_FAULT_EN	×0840	0	Read	Write	PS2. Note that actual values of	'2 ':' 0.5 A' '3 ':' 0.75 A'
<				>	NI THRESH are disabled until	'4 ':' 1 A'

Next Disable Automatic Power State Mode so that the above value of NI_THRESH is not enabled User Defined

	Cmd	Value	Read	Write	^
LOOP1_DIODE_EMU_X2	x0428	0	Read	Write	
LOOP1_DIODE_EMU_PW	x0428	7	Read	Write	
LOOP1_DIODE_EMU_THRESH	x0428	1	Read	Write	
LOOP1_DE_OFF_TIME_ADJ	x0428	4	Read	Write	
LOOP1_LE_TH	x042A	9	Read	Write	
LOOP1_AUTO_PS_MODE	x0432	0	nead		
LOOP1_INDUCTOR_NI_THRESH	x0440	1	Read	Write	
LOOP2_PSI_OC_EN	x083E	0	Read	Write	
LOOP2_PI_FAULT_EN	×0840	0	Read	Write	~
<				>	

Page 12

Finally we enter the number of available power phases based on the module being used. Since MLX080 is being used for the scope capture the D0 register is set for max 2 phases

		User Defined					
			Cmd	Value	Read	Write	^
Note		LOOP2_ERR_ITH	0x083A	0	Read	Write	
Note		LOOP2_FC_SLOPE_TH	0x083A	7	Read	Write	
'data': ' The maximum number of phase		LOOP2_DIODE_BRAKE	0x0840	0	Read	Write	
that active on loop 1'		LOOP2_BBRK_FREQ_TH	0x0844	0	Read	Write	
'bit ': ' [2:0] ' '0 ': ' 1 '	Set a max of 2 phases	COMMON_LOOP1_PHASE_ACTIVE_PS1	0x0024	0	Read	Write	
11 1:121 12 1:131		COMMON_LOOP1_PHASE_ACTIVE_MAX	0x0024	1	Read	Write	
'3 '5' 4' '4 '5' 5'	Advanced DO	COMMON_LOOP2_PHASE_ACTIVE_PS1	0x0024	0	Read	Write	
'5 ':'6' '6 ':'7'	Command	COMMON_LOOP2_PHASE_ACTIVE_MAX	0x0024	0	Read	Write	
7 1:181		COMMON_LOOP1_PHASE1_THRESH	0x0026	0	Read	Write	
		COMMON_LOOP1_PHASE2_DELTA	0x0026	0	Read	Write	
		COMMON LOOPT PHASES DELTA	0v0026	0	Read	W/rite	~

Scope capture when the module is powered with no load

Scope capture showing PWM activity with varying load—large/slow 5ms timescale

Scope capture showing PWM activity with varying load—faster 20µs timescale

In the above setting once the load cycle occurs module stays in PSO mode unless DEM is again manually set. Next we can look at setting the module using an automatic mode where the module goes back to DEM once the load is removed.

The module can also use the inductor negative current threshold to drive the diode emulation mode beyond no load. For that AUTO_PS_MODE register has to be enabled. Once the AUTO mode is enabled it has the additional advantage that module goes back to PS2 mode operation after every load cycle, or else it would have remained in PS0 mode. Also now the INDUCTOR_NI_THRESH value comes into play

Scope capture when the module is powered with NI Threshold set to 0.25A

Scope capture when the module is powered with NI Threshold set to max value of 15.75A

The benefit of using the automatic power state mode is that the module goes back to PS2 (DE) once load is removed

Page 16

Using an example of a single Phase Module (MLX040), the module can be set to operate in low duty cycle skip as shown before

Next the ON/OFF times is doubled

-	User Defined					
		Cmd	Value	Read	Write	^
	LOOP1_FC_SLOPE_TH	0x043A	7	Read	Write	
	LOOP1_DIODE_BRAKE	0x0440	0	Read	Write	- 1
	LOOP1_BBRK_FREQ_TH	0x0444	0	Read	Write	
	LOOP1_PSI_OC_EN	0x043E	0	Read	Write	
	LOOP1_PI_FAULT_EN	0x0440	0	Read	Write	
	LOOP1_DIODE_EMU_X2	0x0428	1			_

Advanced D0 Command

Double DE Pulse Width 1=doubles ON/OFF times for diode emulation. Used when using large L & C

Note

'bit ':'[11:11]'

10 1: 1 Disabled 1 11 1: 1 Doubles ON/OFF

Page 17

The following scope capture shows how the Double DE Pulse Width can affect the output voltage waveform

Diode Emulation can also be programmed to set the error threshold in the output voltage for triggering a pulse. This controls the amount of deviation permitted on the bus during DE mode

Next Threshold is raised to 12mV

Another option is to reduce the Off time of pulses when module is in DE mode

Next Threshold is raised to 375.3ns

next meshold is raised to 37	5.5115		
B File I Vertical ↔ Timebase I Trigger III Display	✓ Cursors E Measure 🗎 Math 🗠 Analysis 🛠 Uti	ities O Support	Normal 🔒
w <u>Vout</u>			
	6 2002 hs '7 ': 291.9 ns' '8 ': 333.6 ns' '9 ': 375.3 ns' '10 ': 417 ns' '11 ': 458.7 ns'		
	112 11 500 d pe		Lower FET turns
800 mV		100	AAAAAAA
750 m ²			
-10 ps -6 ps	6 ps -4 ps -2 ps	0 m 2 jn 4	ែត 6 ត្រ 8 ត្រ
Page 20			

Option to run module in skip mode and turn on all phases once voltage dips below error threshold. Set as follows:

If threshold is not triggered module runs in discontinuous model

2) Logic level settings for Enable Pin

The MLX series modules offer the option to switch between TTL and LVT logic levels for the enable pin. This can be done through the D0 register setting as shown below:

Command Name and explanation in parenthesis	Address Offset	Application: Common, Loop1 or Loop2	Description, Range	Default Value
d2p_enable_LVT_Thresh	D0 0048	COMMON	0 (Sets the input threshold level TTL for the EN input pads.)	0
(Sets the input threshold level)	[15:15]	COMMON	1 (Sets the input threshold level LVT for the EN input pads.)	0

User Defined								
	Cmd	Value	Read	Write				
COMMON_LOOP1_PHASE_ACTIVE_PS1	0x0024	0	Read	Write				
COMMON_LOOP1_PHASE_ACTIVE_MAX	0x0024	2	Read	Write				
COMMON_D2P_ENABLE_LVT_THRESH	0x0048	0	Read	Write				
COMMON_FIXED_MEASURED_IIN_OFFSET	0x003E	0	Read	Write				
COMMON_LOOP1_PHASE1_THRESH	0x0026	10	Read	Write				

MLX modules also offer the option of sequencing the outputs when Enable Pins are used to control outputs

En_delay_mode	Description	Loop1 starts	Loop2 starts	
0	Independent ENs	After Loop1 Enable pin	After Loop2 Enable pin	
1	Shared EN	After (Loop1 Enable pin+ En_delay_	time)	
2	L1 EN ►L2	After Loop1 Enable pin	After (Loop1 Enable pin+ En_delay_time)	
3	L2 EN ►L1	After (Loop2 Enable pin+ En_delay_time)	After Loop2 Enable pin	
4	L1 PG ►L2	After Loop1 Enable pin	After (Loop1 PowerGood + EN_delay_time)	
5	L2 PG ►L1	After (Loop2 PowerGood + EN_delay_time)	After Loop2 Enable pin	
6,7	OFF	Reserved	Reserved	

EN_delay_time	0	1	2	3	4	5	6	7
Delay	No delay	0.25ms	0.5ms	1.0ms	2.5ms	5.0ms	10ms	Reserved

3) Security Settings—Write and Read Protection

- The MLX series modules provide multiple register read and write access protection mechanisms.
- All protection mechanisms must be disabled in order to access a protected register.
- Password-based access protection is enabled by setting the protection mode and PASSWORD.
- The password values cannot be read, will always return 0xFFFF when these registers are read.
- Once a password is programmed to a non-zero value, the user must program matching password value in the user_try_password register.
- User can attempt to program the correct value into user_try_password up to 4 times, after which they will be locked out. However, the password attempt count is cleared when power is cycled.
- Password-based access protection is enabled by setting the protection mode and PASSWORD
- The password values cannot be read, will always return 0xFFFF when these registers are read
- Once a password is programmed to a non-zero value, the user must program matching password value in the user_try_password
- The operator can attempt to program the correct value into user_try_password up to 4 times, after which they will be locked out, the register

password attempt count is cleared when power is cycled

Common Security register settings:

COMMON_WRITE_PROTECT_MODE:

0—Password

1—Lock Forever

COMMON_READ_PROTECT_MODE

0- Password

1- Lock Forever COMMON_WRITE_PROTECT_SELECTION

- 0 No Protection
- 1- Protect configuration, OTP_CNFG, OTP_TRIM,OTP_USR, PMBus registers*
- 2- Reserved
- 3- Protect all, For all USER register

COMMON_READ_PROTECT_SELECTION

- 0- No Protection
- 1- Protect configuration, OTP_CNFG, OTP_TRIM, OTP_USR, PMBus registers*
- 2- Protect all but telemetry,
- 3- Protect all, all CNFG, TRIM, and USER register

COMMON_USER_PASSWORD

A 16-bit password that provides read/write protection for the User registers*

COMMON_USER_TRY_PASSWORD

Used to access user registers when the password matches to user_try_password values

* Note : User Registres listed on next page

User Defined

	Cmd	Value	Read	Write
COMMON_WRITE_PROTECT_MODE	0x002A	0	Read	Write
COMMON_READ_PROTECT_MODE	0x002A	0	Read	Write
COMMON_WRITE_PROTECT_SELECTION	0x002A	0	Read	Write
COMMON_READ_PROTECT_SELECTION	0x002A	0	Read	Write
COMMON_USER_PASSWORD	0x005C	65535	Read	Write
COMMON_USER_TRY_PASSWORD	0x009C	0	Read	Write

3) Security Settings—Register Listing

User Register Categories

	REG Section	Start	End	
Common	OTP_CNFG Registers	0x0000	0x0002	ABB used Only
Loop1	OTP_CNFG Registers	0x0400	0x0402	ABB used Only
Loop2	OTP_CNFG Registers	0x0800	0x0802	ABB used Only
Common	OTP_Trim Registers	0x0008	0x001C	ABB used Only
Loop1	OTP_Trim Registers	0x0408	0x041C	ABB used Only
Loop2	OTP_Trim Registers	0x0808	0x081C	ABB used Only
Common	Read_Write_Registers	0x0080	0x00A6	
				COMMON_PHASE_GATE
				COMMON_LOOP1_SELECT_PHASE
				COMMON_LOOP2_SELECT_PHASE
				COMMON_DEBUG_LOCK
				COMMON_PHASE_GATE
				COMMON_IOUT_CALIBRATION_EN
				COMMON_USER_TRY_PASSWORD
Loop1	Read_Write_Registers	0x0480	0x04A6	ABB used Only
Loop2	Read_Write_Registers	0x0880	0x08A6	ABB used Only

3) Security Settings—Register Listing

User Register Categories (continueed)

REG Section	Start	End	
Common OTP_USER Register	rs 0x0020	0x005C	
			COMMON_I2C_DEVICE_ADDR
			COMMON_PMB_DEVICE_ADDR
			COMMON_IMON_MAX_CODE
			COMMON_TELEMETRY_BW
			COMMON_LOOP1_READ_IOUT_SCALE
			COMMON_LOOP1_PHASE_ACTIVE_PS1
			COMMON_LOOP1_PHASE_ACTIVE_MAX
			COMMON_LOOP2_PHASE_ACTIVE_PS1
			COMMON_LOOP2_PHASE_ACTIVE_MAX
			COMMON_LOOP1_PHASE_ACTIVE_PS1
			COMMON_LOOP1_PHASE_ACTIVE_MAX
			COMMON_LOOP2_PHASE_ACTIVE_PS1
			COMMON LOOP2 PHASE ACTIVE MAX
			COMMON_LOOP1_PHASE1_THRESH
			COMMON_LOOP1_PHASE2_DELTA
			COMMON_LOOP1_PHASE3_DELTA
			COMMON_LOOP1_PHASE4_DELTA
			COMMON_LOOP1_PHASE5_DELTA
			COMMON_LOOP1_PHASE6_DELTA
			COMMON_LOOP2_PHASE1_THRESH
			COMMON_LOOP2_PHASE2_DELTA
			COMMON_WRITE_PROTECT_MODE
			COMMON_READ_PROTECT_MODE
			COMMON_WRITE_PROTECT_SELECTION
			COMMON_READ_PROTECT_SELECTION
			COMMON_FIXED_MEASURED_IIN_OFFSET
			COMMON_DISABLE_OUTPUT
			COMMON_EN_DELAY_MODE
			COMMON_EN_DELAY_TIME
			COMMON_PH1_CURRENT_OFFSET
			COMMON_PH2_CURRENT_OFFSET
			COMMON PH3 CURRENT OFFSET
			COMMON PH4 CURRENT OFFSET
			COMMON_PH5_CURRENT_OFFSET
			COMMON_PH6_CURRENT_OFFSET
			COMMON_PH7_CURRENT_OFFSET
			COMMON PH8 CURRENT OFFSET
			COMMON_ISNS_USER_GAIN_PHASE_1
			COMMON_ISNS_USER_GAIN_PHASE_2
			COMMON_ISNS_USER_GAIN_PHASE_3
			COMMON_ISNS_USER_GAIN_PHASE_4
			COMMON_ISNS_USER_GAIN_PHASE_5
			COMMON_ISNS_USER_GAIN_PHASE_6
			COMMON_ISNS_USER_GAIN_PHASE_0
			COMMON_ISNS_USER_GAIN_PHASE_7
			COMMON_D2P_ENABLE_LVT_THRESH
			COMMON_USER_PASSWORD

3) Security Settings—Register Listing

User Register Categories (continued) -

	REG Section	Start	End	
Loop1	OTP_USER Registers	0x0420	0x045C	
				LOOP1_RELATIVE_OVP_THRESH_EN
				LOOP1_RELATIVE_OVP_THRESH
				LOOP1_RELATIVE_UVP_THRESH_EN
				LOOP1_RELATIVE_UVP_THRESH
				LOOP1_TSEN_FAULT_EN
				LOOP1_TSEN_FAULT_SHUTDOWN
				LOOP1_PID_KP
				LOOP1_PID_KI
				LOOP1_PID_KD
				LOOP1_PID_KPOLE1
				LOOP1_PID_KPOLE2
				LOOP1_FC_D
				LOOP1_FC_HTH
				LOOP1_FC_SHAPE
				LOOP1_FC_P
				LOOP1_V_LIFT
				LOOP1_DB_DURATION
				LOOP1_ERR_ITH
				LOOP1_FC_SLOPE_TH
				LOOP1_DIODE_BRAKE
				LOOP1_BBRK_FREQ_TH
				LOOP1_LOADLINE_BW
				LOOP1_PSI_OC_EN
				LOOP1_PI_FAULT_EN
				LOOP1_DIODE_EMU_X2
				LOOP1_DIODE_EMU_PW
				LOOP1_DIODE_EMU_THRESH
				LOOP1_DE_OFF_TIME_ADJ
				LOOP1_LE_TH
				LOOP1_AUTO_PS_MODE
				LOOP1_INDUCTOR_NI_THRESH
				LOOP1_TEMPERATURE_OFFSET
				LOOP1_IIN_PER_PHASE_OFFSET
				LOOP1_FIXED_IIN_OFFSET

Category above also applies to Loop 2 0x0820 to 0x085C

3) Security Settings—Register Listing

User Register Categories (continued) -

	REG Section	Start	End	
Loop1	Pmbus	0x00	0xD6	
				PAGE
				OPERATION
				VOUT_COMMAND
				VOUT_MODE
				VOUT_TRIM
				POWER_MODE
				VOUT_MAX
				VOUT_MIN
				VOUT_MARGIN_HIGH
				VOUT_MARGIN_LOW
				VOUT_TRANSITION_RATE
				VOUT_DROOP
				VOUT_RESET
				RESET_TRANSITION_RATE
				WRITE_PROTECT
				FREQUENCY_SWITCH
				IOUT_CAL_OFFSET
				IOUT_CAL_GAIN
				ON_OFF_CONFIG
				VIN_ON
				VIN_OFF
				POWER_GOOD_ON
				POWER_GOOD_OFF
				TON_DELAY
				TON_RISE
				TOFF_DELAY
				TOFF_FALL
				TON_MAX_FAULT_LIMIT
				TON_MAX_FAULT_RESPONSE
				VOUT_OV_FAULT_LIMIT
				VOUT_OV_FAULT_RESPONSE
				VOUT_OV_WARN_LIMIT
				VOUT_UV_FAULT_LIMIT
				VOUT_UV_FAULT_RESPONSE
				VOUT_UV_WARN_UMIT
				IOUT_OC_FAULT_LIMIT
				IOUT_OC_FAULT_RESPONSE
				IOUT_OC_WARN_LIMIT
				OT_FAULT_LIMIT
				OT_FAULT_RESPONSE
				OT_WARN_LIMIT
				VIN_OV_FAULT_LIMIT
				VIN_OV_FAULT_RESPONSE
				VIN_UV_WARN_LIMIT
				IIN_OC_WARN_LIMIT
				POUT_OP_WARN_LIMIT
				PIN_OP_WARN_LIMIT
				SMBALERT_MASK_STATUS_VOUT
				SMBALERT_MASK_STATUS_IOUT
				SMBALERT_MASK_STATUS_INPUT
				SMBALERT_MASK_STATUS_TEMPERATURE
				SMBALERT_MASK_STATUS_CML
				SMBALERT_MASK_STATUS_MFR_SPECIFIC

Category above also applies to Loop 2 0x00 to 0xD6

3) Security Settings—Write and Read Protection

Process to set a password for write/read protection: Step 1: set common_write_protection_mode=0 as password protection mode Step 2: select common_write_protection_selection=3 to protect all user registers Step 3: set common_read_protection_mode=0 as password protection mode Step 4: select common_write_protection_selection=2 to protect all user registers but telemetry Step 5: create a password (range 0-65535), default password is 62235(please keep your password safe) Process to access register value under write/read protection: User Defined - COMMON_USER_TRY_PASSWORD - Type the password created before

- Password-based access protection is enabled by setting the protection mode and PASSWORD
- The operator can attempt to program the correct value into user_try_password up to 4 times, after which they will be locked out, the register password attempt count is cleared when power is cycled

	Cmd	Value	Read	Write
	······			
COMMON_WRITE_PROTECT_MODE	0x002A	0	Read	Write
COMMON_READ_PROTECT_MODE	0x002A	0	Read	Write
COMMON_WRITE_PROTECT_SELECTION	0x002A	0	Read	Write
COMMON_READ_PROTECT_SELECTION	0x002A	0	Read	Write
COMMON_USER_PASSWORD	0x005C	65535	Read	Write
COMMON_USER_TRY_PASSWORD	0x009C	0	Read	Write

4) Control Loop—ATA and PID Tuning

The MLX series modules have 2 control loops:

- Adaptive Transient Algorithm (ATA) is a wideband non-linear control loop which can react faster to load transients and ensures that the output voltage is within the regulation limits even during fast dynamic load and voltage change events.
- A linear Proportional-Integral-Derivative (PID) digital controller on the DyInx III family provides loop compensation for the system regulation. The Digital compensator process the digitized error voltage coming from the high-speed voltage error ADC. The MLX has 2 identical and independent loops to control 2 independent outputs if configured that way. The PID loop operates slower than the ATA Loop. The transfer function of the compensator is:

$$(Kp + \frac{Ki}{s} + Kd \bullet s) \bullet \left(\frac{1}{1 + \frac{s}{\omega p_1}}\right) \bullet \left(\frac{1}{1 + \frac{s}{\omega p_2}}\right)$$

Kp = Proportional Coefficient

P1 = Configurable filter 1 pole

P2 = Configurable filter 2 pole

Ki = Integral Coefficient Kd= Derivative Coefficient

The 2 poles are designed to filter and roll off the high frequency gain that Kd coefficient generates

4a) Control Loop—ATA Tuning

- The ATA Loop is triggered once the magnitude(/FC_HTH) and Slope Thresholds(/FC_Slope_TH) are exceeded.
- Next the shape term(/FC_Shape) kicks in and once the slope falls below threshold the shape term is disengaged.
- The P Term (/FC_P) multiplies the magnitude of V_error.
- The D Term(/FC_D) multiples the slope of V_error.
- FC_Shape is additional gain applies to P and D terms.
- Once the voltage error slope goes to zero the contribution from D-Term goes to zero.
- Offset(/V_Lift) is temporary offset added to VOUT following a load add event.
- Enable Diode Break(/Diode_brake) helps reduce V_OUT overshoot following a load release event and Diode Break duration (DB_duration) specifies max length of time the Diode Break function will operate to limit overshoot.
- Load Oscillation Frequency(/_BBRK_FREQ_TH) is the frequency below which body braking is allowed
- Once overshoot threshold(/ERR_ITH) is exceeded all pulses are terminated.
- When Voltage error goes to zero(or positive) ATA is disengaged and PID takes over
- A value of OF(h)/15(d) in the /FC_HTH register and 0 in /FC_P registers DISABLES ATA

4a) Control Loop—ATA Tuning– Simulation Example

ATA functionality can be evaluated through the Simplis models available on the Power Module Wizard website. The following configuration was run to demonstrate improvement using ATA algorithm

- Step up load current from 20A to 100A in 1us, then step down from 100A to 20A in 1us, Vout=1.0V and Loadline=1mOhm
- Red dotted line --- ATA disabled Red solid line--- ATA enabled with proper tuned parameters
- ATA Parameters:
- FC_HTH=5
- FC_P=15
- FC_slope_TH=2
- FC_D=1
- FC_shape=0
- V_lift=0
- Err_ITH=5
- BBRK_EN=1
- Boost_Duration=4
- BBRK_Duration=1
- Loadline=1 mohm
- AC_EN=0

From graph of Simplis simulation, we can see that Vout has smaller undershoot and overshoot with enabled ATA.

4a) Control Loop—ATA Tuning– Simulation Example

The mechanism by which ATA improves the Transient performance is as follows:

ATA reduces overshoot by turn off both high/low side FETs to enable Tri-state PWM

4a) Control Loop—ATA Tuning– Evaluation Board Example

The following scenario was created on an evaluation board to demonstrate an example where ATA can make a dramatic improvement over the conventional Loop.

the above example, ATA brought some nice improvements

	Vin	9.0V		9.0V		
Test	Vout	1.5V	ATA disabled	1.5V	ATA Enabled	
Condition	lout	0A>80A in 1us	s 804	80A>0A in 1us	ATA Enabled	
	slew Rate	80A/us		80A/us		
	Кр	35		35		
	Ki	35		35		
PID	Kd	50		50		
	Pole1	3		3		
	Pole2	5	Vout Undershoot=30.5mV	5		
	FC_D	0		10		
	FC_HTH	15/disabled		3/12mV	Vout Undershoot=15.0mV	
	FC_Shape	0		0	Vout Overshoot=15.5mV	
	FC_P	0/ATA disabled	Vout Overshoot=30.0mV	25/Enabled		
ΑΤΑ	V_Lift	0		0		
	DB_duration	0/666ns		0/666ns		
	Err_lth	15/60mV		3/12mV		
	FC_slope	7/84mV/us		1/12mV/us		
	Didoe Brake	0/disabled		1/enabled		

Remember modules ship with ATA disabled!

From graph of Simplis simulation, we can see that Vout has smaller undershoot and overshoot with enabled ATA

4b) Control Loop—PID Tuning

- A linear Proportional-Integral-Derivative (PID) digital controller on the MLX family provides loop compensation for the system regulation. The Digital compensator process the digitized error voltage coming from the high-speed voltage error ADC.
- The pulse-width for each of the active phase is determined from the outputs of the PID and phase current balance control signals and feed into the PWM generator.
- The MLX family have 2 identical and independent loops to control 2 independent output if configured as such.
- The loop compensator coefficients are user configurable to optimize the system response, the PID algorithm has 2 additional programable poles that serve as an equivalent type III analog compensator.

To Increase Zero1 Frequency	a) Increase Ki
	b) Decrease Kp

To decrease Zero2 frequency

a)Increase Kd b) Decrease Kp

4b) Control Loop—PID Tuning

Through the DPI tool, the PID values for each loop can be adjusted through the following registers.

User Defined					
	Cmd	Value	Read	Write	
LOOP1_PID_KP	0x0422	28	Read	Write	
LOOP1_PID_KI	0x0422	14	Read	Write	
LOOP1_PID_KD	0x0424	47	Read	Write	Loop 1 PID
LOOP1_PID_KPOLE1	0x0424	5	Read	Write	
LOOP1_PID_KPOLE2	0x0424	7	Read	Write	
LOOP2_PID_KP	0x0822	28	Read	Write	7
LOOP2_PID_KI	0x0822	14	Read	Write	
LOOP2_PID_KD	0x0824	47	Read	Write	Loop 2 PID
LOOP2_PID_KPOLE1	0x0824	5	Read	Write	
LOOP2_PID_KPOLE2	0x0824	7	Read	Write	

The values set through the registers are then scaled and translated to gain or frequency adjustment. Scaling is first determined based on the phases. The scaling helps keep a consistent loop gain response across different phases (see next page)

		Compensation Scaling Factors based on Phases							
		Phases	Кр	Ki	Kd	Kp1	Kp2		
	N 4 +	1	Kp-0	0	Kd-0	Kp1-0	Kp2-0		
	er +	2	kp-2	0	Kd-4	Kp1+2	Kp2+2		
1.004		3	Кр-З	0	Kd-6	Kp1+3	Kp2+3		
160A		4	kp-4	0	Kd-8	Kp1+4	Kp2+4		
Master + 160A Sat		5	kp-5	0	Kd-9	Kp1+5	Kp2+5		
100A Sat		6	kp-5	0	Kd-10	Kp1+5	Kp2+5		
		7	kp-6	0	Kd-11	Kp1+6	Kp2+6		
	1004	8	kp-6	0	Kd-12	Kp1+6	Kp2+6		

This is then translated from the register values to change in gain

kp[5:0]= (4+kp[1:0]) * 2^(kp[5:2]-9); Ex. 24h= 100100 = 4+0*2^(9-9) = 4 ki[5:0]= (4+ki[1:0]) * 2^(ki[5:2]-21); Ex. 1Fh= 011111 = 4+3*2^(7-21) = .000427 kd[5:0]= (4+kd[1:0]) * 2^(kd[5:2]-10); Ex. 21h= 100001 = 4+1*2^(8-10) = 1.25

Or change in Frequency

Kp1[3:0] C= $(4+Kp1[1:0]) * 2^{(Kp1[3:2]-9)}$; Ex. 0Eh= $001110 = 4+2*2^{(3-9)} = 0.094$ Band Width = $(C*48e6)/(pi*4-4*C-C^{0.5}) = 753.22$ kHz

Kp2[3:0] C= $(4+Kp1[1:0]) * 2^{(Kp1[3:2]-8)}$; Ex. 0Eh= $001000 = 4+0*2^{(2-9)} = 0.063$ Band Width = $(C*24e6)/(pi*4-4*C-C^{0.5}) = 246.69$ kHz

4b) Control Loop—PID Tuning

Scaling done by the module ensures a consistent loop response by the module as phases are added or dropped. Example of a 3 Phase module (MLX120) shown below. As Phases are added from 1 to 3 there is very small change in crossover frequency, Phase Margin and Gain Margin

Setting used—shows register value and corresponding translated value. Solid line below is single phase. Dotted line shows added phases

MLX120A 3PH to 1PH PID Auto Scaleing

4b) Control Loop—Kp—Proportional Coefficient

The proportional coefficient affects the mid-band frequencies of the Loop gain Plot. As Kp is increased, the crossover frequency increases. However in the Phase Margin curves an increase in Kp causes a reduction in the Phase Margin. So caution should be used that Kp is not increased to a level to drop below the desired 45° of Phase Margin

Curve below generated from Simplis model, Kp =24, 28, 40

Measured Data, Kp = 28, Kp = 28+4, Kp = 28-4 for a MLX120, 3 phase module. Baseline curve is 6_3PH-Gain/Phase shown as a solid line

4b) Control Loop—Kp—Proportional Coefficient

INCREASING Kp—Measured Data, Kp = 28 vs. Kp = 32 for transient response behavior.

DECREASING Kp—Measured Data, Kp = 28 vs. Kp = 24 for transient response behavior.

Page 39

4b) Control Loop—Ki—Integrative Coefficient

The integrative coefficient affects the low-band frequencies of the Loop gain Plot. As Ki is increased, the gain of lower band frequencies increased and the Phase angle reduced. Curve below generated from Simplis model, Ki =6,14,24

Measured Data, Ki = 14, Ki = 14+10, Ki = 14-10 for a MLX120, 3 phase module. Baseline curve is 6_3PH-Gain/Phase in solid line

4b) Control Loop—Ki—Integrative Coefficient

INCREASING Ki-Measured Data, Ki = 14 vs Ki = 24 for transient response behavior

DECREASING Ki-Measured Data, Ki = 14 vs Ki = 4 for transient response behavior

Page 41 © 2023 OmniOn Power Inc. All rights reserved.

4b) Control Loop—Kd—Differentiation Coefficient

The Differentiation coefficient affects the low-band frequencies of the Loop gain Plot. As Kd is increased, the gain of higher band frequencies increased causing an increase in crossover frequency and the Phase angle also increased leading to a higher Phase margin. Curve below generated from Simplis model, Kd =37, 47, 57

Measured Data, Kd = 47, Kd = 47+5, Kd = 47-5 for a MLX120, 3 phase module. Baseline curve is 6_3PH-Gain/Phase in solid line.

4b) Control Loop—Kd—Differentiation Coefficient

INCREASING Kd—Measured Data, Kd = 47 vs Ki =52 for transient response behavior

Decreasing Kd- Measured Data, Kd = 47 vs Kd = 42 for transient response behavior

Page 43

© 2023 OmniOn Power Inc. All rights reserved.

4b) Control Loop—Kpole1-Adjustable Pole 1

The adjustable Pole 1 helps increase High Frequency Gain and filter Noise . Curve below generated from Simplis model, Kpole1 = 2, 5, 10

Measured Data, LPF1=5, LPF1=5+2, LPF1=5-2, 3 phase module. Baseline curve is 6_3PH-Gain/Phase in solid line

MLX120A 3PH LPF1 up and down

4b) Control Loop—Kpole1-Adjustable Pole 1

INCREASING KPole1—Measured Data, Pole1=5, Pole1=7 for transient response behavior

DECREASING KPole1—Measured Data, Pole1=5, Pole1=3 for transient response behavior

Page 45 © 2023 OmniOn Power Inc. All rights reserved.

4b) Control Loop—Kpole2-Adjustable Pole 2

The adjustable Pole 2 helps increase High Frequency Gain and filter Noise . Curve below generated from Simplis model, Kpole 2 = 2, 7, 12

Measured Data, LPF2=7, LPF2=7+2, LPF2=7-2, 3 phase module. Baseline curve is 6_3PH-Gain/Phase in solid line

MLX120A 3PH LPF2 up and down

4b) Control Loop—Kpole2-Adjustable Pole 2

INCREASING KPole2—Measured Data, Pole2=7, Pole2=9 for transient response behavior

DECREASING KPole2—Measured Data, Pole2=7, Pole2=5 for transient response behavior

Page 47 © 2023 OmniOn Power Inc. All rights reserved.

4b) Control Loop— Balanced PID

Effect of optimum loop on transient response behavior

Change History (excludes grammar & clarifications)

Revision	Date	Description of the change
1.1	2/28/2023	Updated Page 24
1.2	11/07/2023	Updated as per OmniOn template

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power. This document does not convey license to any patent or any intellectual property right. Copyright© 2023 OmniOn Power Inc. All rights reserved.