Introduction
This reference design provides a solution to power Virtex® XCVU37P based applications. Using ABB Power Modules ensures a dense, high performance and a cost-effective short design time cycle. ABB Power Modules are designed and tested to comply with IPC9592 standards and have millions of hours of Field Reliability.

Features
- Digital interface through the PMBus™ protocol
- Tunable Loop™ to optimize dynamic output voltage response
- Fixed switching frequency with capability of external synchronization
- Output over current protection (non-latching)
- Over temperature protection
- Remote On/Off
- UL® 60950-1 2nd Ed. Recognized, CSA® C22.2 No. 60950-1-07 Certified, and VDE® (EN60950-1 2nd Ed.) Licensed

Applications
- OTN Switching
- Compute Accelerator, High Performance Computing
- High End Radar
- Test and Measurement, Emulators

Powertree

Figure 1 – ABB Module Solution for key power rails for XCVU37P configuration based on Upper Load Consumption
XCVU37 Power Rail and ABB Module Specifications

<table>
<thead>
<tr>
<th>RAIL</th>
<th>VOLTAGE</th>
<th>ABB MODULE</th>
<th>MODULE OUTPUT</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCINT</td>
<td>0.72/0.85/0.9V, ±3%</td>
<td>TJT120</td>
<td>120A</td>
<td>SETPOINT ±0.7%, Balance Load Step + Ripple + Regulation</td>
</tr>
<tr>
<td>VCCBRAM/INT_IO</td>
<td>0.85/0.9V, ±3%</td>
<td>UJT035</td>
<td>35A</td>
<td>SETPOINT ±0.5%, Balance Load Step + Ripple + Regulation. Rail can be tied to VCCINT if both set to same voltage.</td>
</tr>
<tr>
<td>VCCAUX/ADC</td>
<td>1.8V, ±3%</td>
<td>PJT004</td>
<td>4A</td>
<td>SETPOINT ±0.5%, Balance Load Step + Ripple + Regulation</td>
</tr>
<tr>
<td>VMGTAVTT</td>
<td>1.2V, ±3%</td>
<td>PJT020</td>
<td>20A</td>
<td>SETPOINT ±0.5%, Balance Load Step + Ripple + Regulation, <10mV pk-pk ripple</td>
</tr>
<tr>
<td>VMGTVCCAUX</td>
<td>1.8V, ±3%</td>
<td>APXS002 or PDT003</td>
<td>2A / 3A</td>
<td>SETPOINT ±1%, Balance Load Step + Ripple + Regulation, <10mV pk-pk ripple</td>
</tr>
<tr>
<td>VMGTAVCC</td>
<td>0.9V, ±3%</td>
<td>PDT012</td>
<td>12A</td>
<td>SETPOINT ±1%, Balance Load Step + Ripple + Regulation, <10mV pk-pk ripple</td>
</tr>
<tr>
<td>VCC_HBM/IO</td>
<td>1.2V, ±3%</td>
<td>PJT020</td>
<td>20A</td>
<td>SETPOINT ±0.5%, Balance Load Step + Ripple + Regulation</td>
</tr>
<tr>
<td>VCCAUX_HBM</td>
<td>2.5V, ±3%</td>
<td>PDT003 or APXS002</td>
<td>3A / 2A</td>
<td>SETPOINT ±1%, Balance Load Step + Ripple + Regulation</td>
</tr>
</tbody>
</table>

ABB Reference Solutions

ABB’s products used in these reference designs are fully integrated Point-of-Load power modules providing a high reliability (IPC9592 qualified), easy-to-use, fast time-to-market, high efficiency, small footprint, and excellent thermal derating option for powering FPGAs. ABB’s reference designs use digital power modules with PMBus™ making sequencing easy. Reference designs do not include a power management IC but any external PMBus compliant controller or the external I2C/PMBus based system controller can be used to sequence and monitor the rails.
ABB Module Description

TJT120 - The TJT120 is a dense 4 Phase Buck Converter with PID control and PMBus communications support for start-up and sequencing control. This high-power, full-featured module operates from 7-14 Vin and provides an output of 120A over an adjustable output voltage range of 0.6 to 1.5Vdc. It has low output noise and a Digital Compensator accessible through PMBus to enable a programmable dynamic load transient performance. It is compliant to Category 2 of IPC-9592. Detailed Datasheet available at https://www.geindustrial.com/products/embedded-power/dlynx

UJT035 - The UJT035 provides 35A of output in a dense DOSA based MICRO footprint. This single-phase Buck Converter operates from 4.5 -14.4 Vin and provides an output of 35A over an adjustable output voltage range of 0.51 to 3.63Vdc. It has a PMBus interface for start-up and sequencing control; and Tunable Loop™ to ensure a tight load transient performance. It is compliant to Category 2 of IPC-9592. Detailed Datasheet available at https://www.geindustrial.com/products/embedded-power/dlynx

PJTO20 - The PJT020 provides 20A of output in a dense DOSA compliant PICO footprint. This single-phase Buck Converter operates from 4.5 -14.4 Vin and provides an output of 20A over an adjustable output voltage range of 0.51 to 3.63Vdc. It has a PMBus interface for start-up and sequencing control; and Tunable Loop™ to ensure a tight load transient performance. It is compliant to Category 2 of IPC-9592. Detailed Datasheet available at https://www.geindustrial.com/products/embedded-power/dlynx

PDT012 - The PDT012 provides 12A of output in a DOSA compliant PICO footprint. This single-phase Buck Converter operates from a wide 3 -14.4 Vin and provides an output of 12A over an adjustable output voltage range of 0.45 to 5.5Vdc. It has a PMBus interface for on/off control; and Tunable Loop™ to ensure a tight load transient performance. It is compliant to Category 2 of IPC-9592. Detailed Datasheet available at https://www.geindustrial.com/products/embedded-power/dlynx

PJTO04 - The PJT004 provides 4A of output in a DOSA compliant PICO footprint. This single-phase Buck Converter operates from 4.5 -14.4 Vin and provides an output of 4A over an adjustable output voltage range of 0.51 to 5.5Vdc. It has a PMBus interface for start-up and sequencing control; and Tunable Loop™ to ensure a tight load transient performance. It is compliant to Category 2 of IPC-9592. Detailed Datasheet available at https://www.geindustrial.com/products/embedded-power/dlynx

PDT003 - The PDT003 provides 3A of output in a DOSA compliant PICO footprint. This single-phase Buck Converter operates from a wide 3 -14Vin and provides an output of 3A over an adjustable output voltage range of 0.45 to 5.5Vdc. It has an analog interface for on/off control; and Tunable Loop™ to ensure a tight load transient performance. It is a cost-effective solution where digital communication is not required or is not available. Detailed Datasheet available at https://www.geindustrial.com/products/embedded-power/tlynx

APXS002 - The APXS002 provides 2A of output in a DOSA compliant PICO footprint. This single-phase Buck Converter operates from a wide 3 -14Vin and provides an output of 2A over an adjustable output voltage range of 0.6 to 5.5Vdc. It has an analog interface for on/off control; and Tunable Loop™ to ensure a tight load transient performance. It is a cost-effective solution where digital communication is not required or is not available. Detailed Datasheet available at https://www.geindustrial.com/products/embedded-power/tlynx
Hardware for Testing

The main hardware used was the XCVU37P evaluation board and associated test equipment.

![Evaluation Board Top and Bottom View](image)

Figure 2 – Evaluation Board Top and Bottom View

Test Equipment

<table>
<thead>
<tr>
<th>Function</th>
<th>Make</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Power Supply</td>
<td>Chroma</td>
<td>62050P-100-100</td>
</tr>
<tr>
<td>DC Load 1</td>
<td>Chroma</td>
<td>63205A-150-500</td>
</tr>
<tr>
<td>DC Load 2</td>
<td>Agilent</td>
<td>N3300A</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Teledyne Lecroy</td>
<td>HDO6104</td>
</tr>
<tr>
<td>Scope Probe (Voltage)</td>
<td>HP</td>
<td>10070A</td>
</tr>
<tr>
<td>Scope Probe (Current)</td>
<td>Teledyne Lecroy</td>
<td>AP015</td>
</tr>
<tr>
<td>Function Generator</td>
<td>Agilent</td>
<td>22310A</td>
</tr>
<tr>
<td>Bode Plots</td>
<td>Venable</td>
<td>Model 350 system</td>
</tr>
</tbody>
</table>

Tests

Module Output On-Off Sequencing

Module output was turned on and off using PMBus for those rails that needed a specific sequencing order as specified in the Xilinx™ documentation. An external computer running ABBs DPI-ProGUI software was used to turn on modules in sequence. A free version of the software is available here http://go.ge-energy.com/DigitalPowerInsight.html
Efficiency

Module Efficiency was measured on individual evaluation boards which provided better access to individual module input and output points to get an accurate readback of efficiency. Efficiency curves have been generated from fixed measurements at standard interval point through a standardized test equipment setup and then data interpolated to provide the efficiency at specific output voltages.

Output Ripple Voltage

The Output Ripple Voltage was measured using Tektronics probe connector (Part No 131-4353-00) mounted close to the load terminations on the evaluation board. Measurements were done for the upper load specified by Xilinx™ for each rail in the XCVU37P configuration.

Load Transient

For the VCCINT rail a simple power FET circuit was added to the evaluation board to generate the fast rise time demanded by the rail. The output voltage was measured at the same point where the output ripple was measured. For other rails the a short connection to the Chroma Load was made to enable the appropriate step load and slew rate for each rail.

Bode Plots

Loop Gain Measurements were done on the individual rails at upper load levels specified by Xilinx™

Load Regulation

Measurement at the load of the variation in output voltage with Sense Line from modules connected to the Output Load

Thermal

A Thermal image using an IR Camera was captured of the board after running all the modules on the board at Xilinx specified upper load for each rail for 20 minutes.
Module Output On-Off Sequencing Curves

Figure 3 – ON Sequence – VCCINT (Yellow), VCCBRAM (Red), VCCAUX (Blue) (Axis Scale: 500mV(y), 500ms(x))

Figure 4 – OFF Sequence – VCCINT (Yellow), VCCBRAM (Red), VCCAUX (Blue) (Axis Scale: 500mV(y), 500ms(x))

Figure 5 – ON Sequence – VCCINT (Yellow), VMGTAVCC (Red), VMGTAVTT (Blue) (Axis Scale: 500mV(y), 500ms(x))

Figure 6 – OFF Sequence – VCCINT (Yellow), VMGTAVCC (Red), VMGTAVTT (Blue) (Axis Scale: 500mV(y), 500ms(x))

Note: For full-size plots, download complete report. Go to Test Report.

Efficiency Curves

Figure 7 – VCCINT Efficiency – TJT120 (0.72Vout)

Figure 8 – VCCBRAM/IO Efficiency – UJL035 (0.85Vout)
Figure 9 – VCCAUX Efficiency – PJT004 (1.8Vout)

Figure 10 – VMGTAVCC Efficiency – PDT012 (0.9Vout)

Figure 11 – VMGTAVTT Efficiency – PJT020 (1.2Vout)

Figure 12 – VCC_HBM Efficiency – PJT020 (1.2Vout)

Figure 13 – VMGTVCCAUX Efficiency – APXS002 (1.2Vout)

Figure 14 – VCCAUX_HBM Efficiency – APXS002 (2.5Vout)
Output Ripple - All measurements at Upper Load specified by XILINX™

Figure 15 – VCCINT – TJT120 (Axis Scale -10mV(y), 1us(x))
Figure 16 – VCCBRAM/IO – UJT035 (Axis Scale 10mV Scale(y), 2us(x))
Figure 17 – VCCAUX – PJT004 (Axis Scale (10mV Scale(y), 2us(x))
Figure 18 – VMGTAVCC – PDT012 (Axis Scale (10mV Scale(y), 2us(x))
Figure 19 – VMGTAVTT – PJT020 Axis Scale (10mV Scale(y), 2us(x))
Figure 20 – VCC_HBM Eff – PJT020 (Axis Scale (10mV Scale(y), 2us(x))
Figure 21 – VMGTVCCAUX – APXS002 (Axis Scale (10mV Scale(y), 2us(x))
Figure 22 – VCCAUX_HBM – APXS002 (Axis Scale (10mV Scale(y), 2us(x))
Transients -

Figure 23 – VCCINT – TJT120 (0.72Vout)
Figure 24 – VCCBRAM/IO – UJT035 (0.85Vout)
Figure 25 – VCCAUX – PJT004 (1.8Vout)
Figure 26 – VMGTAVCC – PDT012 (0.9Vout)
Figure 27 – VMGTAVTT – PJT020 (1.2Vout)
Figure 28 – VCC_HBM Eff – PJT020 (1.2Vout)
Figure 29 – VMGTVCCAUX – APXS002 (1.2Vout)
Figure 30 – VCCAUX_HBM – APXS002 (2.5Vout)

Note: For full-size plots, download complete report. Go to Test Report.
Bode Plots

Fig. 31 – VCCINT, TJT120 (0.72Vout), 16kHz BW, 46°PM

Fig. 32: VCCBRAM/I/O, UJT035 (0.85Vo), 46kHz BW, 85°PM

Fig. 33 – VCCAUX – PJT004 (1.8Vol), 59kHz BW, 45°PM

Fig. 34 – VMGTA VCC – PDT012 (0.9Vol) 67kHz BW, 51°PM

Fig. 35 – VMGTA VTT – PJT020 (1.2Vo), 38kHz BW, 67°PM

Fig. 36 – VCC_HBM Eff – PJT020 (1.2Vol), 56kHz BW, 48°PM

Fig. 37: VMGTVCCAUX-APXS002 (1.2Vo), 50kHz BW, 68°PM

Fig. 38: VCCAUX_HBM – APXS002 (2.5Vo) 45kHz BW, 75°PM

Note: For full-size plots, download complete report. Go to Test Report.
Load Regulation - All measurements at 12Vin, Upper Load

Figure 39: VCCINT – TJT120 (0.72Vout), $\Delta = 0.85$ mV

Figure 40: VCCBRAM/IO – UJT035 (0.85Vout), $\Delta = 0.25$ mV

Figure 41: VCCAUX – PJT004 (1.8Vout), $\Delta = 1.1$ mV

Figure 42: VMGTAVCC – PDT012 (0.9Vout), $\Delta = 0.71$ mV

Figure 43: VMGTAVTT – PJT020 (1.2Vout), $\Delta = 1.7$ mV

Figure 44: VCC_HBM Eff – PJT020 (1.2Vout), $\Delta = 2.5$ mV

Figure 45: VMGTVCCAUX – APXS002 (1.2Vo), $\Delta = 0.75$ mV

Figure 46: VCCAUX_HBM – APXS002 (2.5Vo), $\Delta = 1.48$ mV

Note: For full-size plots, download complete report. Go to Test Report.
Thermal Image

![Thermal Image](image)

Figure 47 – Thermal image of the board after running all the modules on the board at full load for 20 minutes. Captured using an IR camera.

Design Files and Reference Data

Schematics

To download the schematics, use the following link [XCVU37P Schematic](#).

Bill of Materials

To download the bill of materials (BOM), use the following link [XCVU37P BOM](#).

Evaluation Board Layout

Xilinx has specific instructions in their FPGA Layout guidelines. To download the Layout used on the evaluation board use the following link [XCVU37P Layout](#).

Guidelines for Layout of all ABB DLynx and DLynxII modules are available here: [Module Layout](#).
Complete Test Report
Detailed Test Report of testing of ABB Modules on Xilinx Evaluation Board is available. Go to Test Report.

Online Simulation Tool
ABB provides a free, cloud-based simulation tool. Reference Designs in this document are available for simulation. Go to Power Module Wizard.

PMBus Tool and GUI
ABB provides a free downloadable GUI which works with the ABB USB to I2C adapter to allow users to command and monitor ABB Modules. Go to Digital Power Insight.

OnLine Materials
Detailed Datasheet of modules used in this reference design and other Reference Material is available at ABB Modules.